Crossair-LX 3597 Unfallbericht

Dies ist eine kostenlose Homepage erstellt mit hPage.com.

Büro für Flugunfalluntersuchungen
Bureau d’enquête sur les accidents d’aviation
Ufficio d’inchiesta sugli infortuni aeronautici
Uffizi d'investigaziun per accidents d'aviatica
Aircraft accident investigation bureau
Schlussbericht Nr. 1793
des Büros für
Flugunfalluntersuchungen
über den Unfall
des Flugzeuges AVRO 146-RJ100, HB-IXM,
betrieben durch Crossair unter Flugnummer CRX 3597,
vom 24. November 2001
bei Bassersdorf/ZH
Bundeshaus Nord, CH-3003 Bern
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 2 von 152
Allgemeine Hinweise zu diesem Bericht
Entsprechend dem Abkommen über die internationale Zivilluftfahrt (ICAO Annex 13) ist das alleinige
Ziel der Untersuchung eines Flugunfalles oder eines schweren Vorfalles die Verhütung künftiger
Unfälle oder schwerer Vorfälle. Es ist nicht Zweck dieser Untersuchung, ein Verschulden festzustellen
oder Haftungsfragen zu klären.
Gemäss Art. 24 des Schweizer Luftfahrtgesetzes ist die rechtliche Würdigung der Umstände und
Ursachen von Flugunfällen und schweren Vorfällen nicht Gegenstand der Flugunfalluntersuchung.
Geschlechtsunabhängig wird in diesem Bericht aus Datenschutzgründen ausschliesslich die männliche
Form verwendet.
Alle Zeiten in diesem Bericht sind, wo nicht anders angegeben, in koordinierter Weltzeit (coordinated
universal time – UTC) angegeben. Im Unfallzeitpunkt galt für das Gebiet der Schweiz die mitteleuropäische
Zeit (MEZ) als Normalzeit (local time – LT). Die Beziehung zwischen LT, MEZ und
UTC lautet: LT = MEZ = UTC + 1 h.
Der Wortlaut des deutschsprachigen Berichtes ist massgebend.
Das Büro für Flugunfalluntersuchungen bedankt sich bei den Behörden und Organisationen für die
Unterstützung, die ihm bei der Durchführung der Untersuchung gewährt wurde.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 3 von 152
Inhaltsverzeichnis
Kurzdarstellung ___________________________________________________ 11
Untersuchung _____________________________________________________ 12
1 Festgestellte Tatsachen_______________________________________ 14
1.1 Vorgeschichte und Flugverlauf ___________________________________ 14
1.1.1 Vorgeschichte ______________________________________________________________ 14
1.1.1.1 Flugzeug ________________________________________________________________ 14
1.1.1.2 Flugbesatzung ___________________________________________________________ 15
1.1.1.2.1 Kommandant _________________________________________________________ 15
1.1.1.2.2 Copilot ______________________________________________________________ 15
1.1.2 Flugverlauf ________________________________________________________________ 16
1.1.2.1 Flugvorbereitung _________________________________________________________ 16
1.1.2.2 Der Flug von Berlin-Tegel nach Zürich ________________________________________ 16
1.2 Personenschäden______________________________________________ 20
1.3 Schaden am Luftfahrzeug _______________________________________ 20
1.4 Sachschaden Dritter ___________________________________________ 21
1.5 Beteiligte Personen ____________________________________________ 21
1.5.1 Kommandant ______________________________________________________________ 21
1.5.1.1 Berufsausbildung _________________________________________________________ 22
1.5.1.2 Fliegerische Ausbildung und Tätigkeit _________________________________________ 22
1.5.1.2.1 Erster Umschulungskurs auf das Flugzeugmuster MD 80 ______________________ 24
1.5.1.2.2 Zweiter Umschulungskurs auf das Flugzeugmuster MD 80 _____________________ 24
1.5.1.2.3 Umschulungskurs auf das Flugzeugmuster Avro RJ 85/100_____________________ 24
1.5.1.3 Tätigkeit als Fluglehrer_____________________________________________________ 25
1.5.1.4 Besondere Vorkommnisse während der Berufslaufbahn___________________________ 26
1.5.1.4.1 Allgemeines __________________________________________________________ 26
1.5.1.4.2 Unbeabsichtigtes Einfahren des Fahrwerks am Boden_________________________ 26
1.5.1.4.3 Abbruch eines Route Checks_____________________________________________ 27
1.5.1.4.4 Einstellung der Tätigkeit als Trainingscaptain________________________________ 27
1.5.1.4.5 Instrumentenanflug in Lugano bei Nacht ___________________________________ 27
1.5.1.4.6 Navigationsfehler während eines privaten Rundfluges_________________________ 27
1.5.1.5 Arbeits- und Führungsverhalten______________________________________________ 28
1.5.2 Copilot ___________________________________________________________________ 29
1.5.2.1 Berufsausbildung _________________________________________________________ 30
1.5.2.2 Fliegerische Ausbildung ____________________________________________________ 30
1.5.2.3 Auswahl des Copiloten durch das Flugbetriebsunternehmen Crossair ________________ 30
1.5.2.4 Umschulungskurs auf das Flugzeugmuster Avro RJ 85/100 ________________________ 31
1.5.2.5 Besondere Vorkommnisse während der Berufslaufbahn___________________________ 31
1.5.3 Flugbegleiter A _____________________________________________________________ 31
1.5.4 Flugbegleiter B _____________________________________________________________ 32
1.5.5 Flugbegleiter C _____________________________________________________________ 32
1.5.6 Flugverkehrsleiter A _________________________________________________________ 32
1.5.7 Flugverkehrsleiter B _________________________________________________________ 33
1.5.8 Flugverkehrsleiter C _________________________________________________________ 33
1.5.9 Flugverkehrsleiter D _________________________________________________________ 33
1.5.10 Flugverkehrsleiter E _________________________________________________________ 33
1.6 Angaben zum Luftfahrzeug ______________________________________ 34
1.6.1 Flugzeug HB-IXM ___________________________________________________________ 34
1.6.1.1 Allgemeines _____________________________________________________________ 34
1.6.1.2 Triebwerk Nummer 1 ______________________________________________________ 34
1.6.1.3 Triebwerk Nummer 2 ______________________________________________________ 35
1.6.1.4 Triebwerk Nummer 3 ______________________________________________________ 35
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 4 von 152
1.6.1.5 Triebwerk Nummer 4 ______________________________________________________ 35
1.6.1.6 Auxiliary Power Unit _______________________________________________________ 35
1.6.1.7 Navigationsausrüstung_____________________________________________________ 35
1.6.1.8 Kommunikationsausrüstung_________________________________________________ 36
1.6.2 Masse und Schwerpunkt _____________________________________________________ 36
1.6.3 Flugzeugsteuerung__________________________________________________________ 37
1.6.3.1 Primäre Flugzeugsteuerung _________________________________________________ 37
1.6.3.2 Sekundäre Flugzeugsteuerung_______________________________________________ 37
1.6.4 Triebwerke ________________________________________________________________ 37
1.6.4.1 Sichtkontrolle ____________________________________________________________ 37
1.6.4.2 Analyse der Daten von Digital Flight Data Recorder und Engine Life Computer ________ 37
1.6.4.3 Einbau Oil Indicator _______________________________________________________ 37
1.6.5 Auxiliary Power Unit _________________________________________________________ 38
1.6.5.1 Sichtkontrolle ____________________________________________________________ 38
1.6.5.2 Dokumentation des Unterhalts ______________________________________________ 38
1.6.6 Ice Detection System ________________________________________________________ 38
1.6.7 Flight Guidance System ______________________________________________________ 38
1.6.7.1 Electronic Flight Instrument System __________________________________________ 38
1.6.7.1.1 Beschreibung des Systems ______________________________________________ 38
1.6.7.1.2 Non Volatile Memories__________________________________________________ 39
1.6.7.2 Automatic Flight System ___________________________________________________ 39
1.6.7.2.1 Beschreibung des Systems ______________________________________________ 39
1.6.7.2.2 Non Volatile Memories__________________________________________________ 41
1.6.7.2.3 Verwendung des Automatic Flight System __________________________________ 41
1.6.7.3 Navigation Management System _____________________________________________ 41
1.6.7.3.1 Beschreibung des Systems ______________________________________________ 41
1.6.8 Navigationsausrüstung_______________________________________________________ 43
1.6.8.1 Inertial Reference System __________________________________________________ 43
1.6.8.1.1 Beschreibung des Systems ______________________________________________ 43
1.6.8.2 VHF-Navigation System ____________________________________________________ 45
1.6.8.2.1 Beschreibung des Systems ______________________________________________ 45
1.6.8.3 Entfernungsmessgerät – Distance Measuring Equipment __________________________ 46
1.6.8.3.1 Beschreibung des Systems ______________________________________________ 46
1.6.8.4 Air Data System __________________________________________________________ 47
1.6.8.4.1 Beschreibung des Systems ______________________________________________ 47
1.6.8.4.2 Non Volatile Memories__________________________________________________ 48
1.6.8.5 Radarhöhenmesser________________________________________________________ 48
1.6.8.5.1 Beschreibung des Systems ______________________________________________ 48
1.6.9 Befunde nach dem Unfall_____________________________________________________ 49
1.6.9.1 Electronic Flight Instrument System __________________________________________ 49
1.6.9.2 Inertial Reference System __________________________________________________ 49
1.6.9.3 VHF-Navigation System ____________________________________________________ 49
1.6.9.4 Air Data System __________________________________________________________ 50
1.6.10 Ground Proximity Warning System _____________________________________________ 50
1.6.11 ATC Transponder System_____________________________________________________ 51
1.6.12 Unterhalt des Luftfahrzeuges__________________________________________________ 52
1.6.13 Prüfung des verwendeten Treibstoffs ___________________________________________ 52
1.7 Wetter ______________________________________________________ 52
1.7.1 Zusammenfassung __________________________________________________________ 52
1.7.2 Allgemeine Wetterlage _______________________________________________________ 53
1.7.3 Streckenwetter Berlin – Zürich_________________________________________________ 53
1.7.4 Wetter im Anflugraum _______________________________________________________ 54
1.7.4.1 Bewölkung ______________________________________________________________ 54
1.7.4.1.1 Aussagen von Flugbesatzungen __________________________________________ 54
1.7.4.1.2 Messungen der Ceilometer ______________________________________________ 54
1.7.4.1.3 Synthese der Aussagen von Flugbesatzungen und der Messungen der Ceilometer __ 55
1.7.4.2 Sicht aus dem Cockpit und meteorologische Sicht _______________________________ 55
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 5 von 152
1.7.4.3 Windprofil _______________________________________________________________ 55
1.7.4.4 Temperaturprofil _________________________________________________________ 55
1.7.4.5 Vereisung _______________________________________________________________ 56
1.7.4.6 Warnungen______________________________________________________________ 56
1.7.5 Wetter im Unfallgebiet _______________________________________________________ 56
1.7.5.1 Bewölkung ______________________________________________________________ 56
1.7.5.2 Niederschläge____________________________________________________________ 57
1.7.5.3 Sicht ___________________________________________________________________ 57
1.7.5.4 Wind ___________________________________________________________________ 57
1.7.6 Wetterbedingungen auf dem Flughafen Zürich ____________________________________ 57
1.7.6.1 Tagesverlauf_____________________________________________________________ 57
1.7.6.2 Wetter im Zeitpunkt des Unfalls______________________________________________ 57
1.7.6.3 Flugplatzwettermeldungen METAR ___________________________________________ 58
1.7.6.4 Wettervorhersagen TAF ____________________________________________________ 59
1.7.7 Ausgestrahlte Wetterinformationen _____________________________________________ 59
1.7.7.1 VOLMET ________________________________________________________________ 59
1.7.7.2 ATIS ___________________________________________________________________ 60
1.7.8 Wetterausstrahlungen zwischen 20:00 und 21:00 UTC _____________________________ 63
1.7.9 Astronomische Angaben______________________________________________________ 63
1.7.9.1 Sonnenstand_____________________________________________________________ 63
1.7.9.2 Mondstand ______________________________________________________________ 63
1.7.10 Pistensichtweite und meteorologische Sicht ______________________________________ 63
1.7.10.1 Pistensichtweite ________________________________________________________ 63
1.7.10.2 Meteorologische Sicht ___________________________________________________ 64
1.7.10.3 Beziehung zwischen meteorologischer Sicht und Pistensichtweite _________________ 64
1.7.10.4 Wolkenbeobachtung_____________________________________________________ 64
1.8 Navigationshilfen______________________________________________ 64
1.8.1 Generelle Einschränkungen ___________________________________________________ 64
1.8.2 Navigationshilfen für den Standard VOR/DME Approach 28 __________________________ 65
1.8.3 Weitere Navigationshilfen ____________________________________________________ 66
1.8.4 Radarüberwachung von Instrumentenanflügen ___________________________________ 66
1.9 Kommunikation _______________________________________________ 67
1.9.1 Beteiligte Flugverkehrleitstellen ________________________________________________ 67
1.9.1.1 Allgemeines _____________________________________________________________ 67
1.9.1.2 Personaleinsatz in der Anflugleitstelle _________________________________________ 67
1.9.1.3 Personaleinsatz in der Platzverkehrsleitstelle ___________________________________ 67
1.9.2 Gesprächsaufzeichnungen ____________________________________________________ 68
1.9.3 Kommunikationsanlagen _____________________________________________________ 68
1.10 Angaben zum Flughafen ________________________________________ 68
1.10.1 Allgemeines _______________________________________________________________ 68
1.10.2 Pistenausrüstung ___________________________________________________________ 69
1.10.3 Betriebskonzept ____________________________________________________________ 69
1.10.4 Rettungs-und Feuerwehrdienste _______________________________________________ 70
1.11 Flugschreiber_________________________________________________ 70
1.11.1 Digital Flight Data Recorder ___________________________________________________ 70
1.11.1.1 Technische Beschreibung_________________________________________________ 70
1.11.1.2 Unterhalt und Überwachung ______________________________________________ 71
1.11.2 Cockpit Voice Recorder ______________________________________________________ 71
1.11.2.1 Technische Beschreibung_________________________________________________ 71
1.11.2.2 Unterhalt______________________________________________________________ 72
1.11.3 Auslesen der Flugdatenschreiber _______________________________________________ 72
1.11.3.1 Qualität der CVR-Aufzeichnung ____________________________________________ 72
1.11.3.2 Qualität der FDR-Aufzeichnung ____________________________________________ 72
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 6 von 152
1.12 Angaben über den Aufprall, das Wrack und die Unfallstelle______________ 73
1.12.1 Aufprall ___________________________________________________________________ 73
1.12.2 Trümmerfeld_______________________________________________________________ 73
1.13 Medizinische und pathologische Angaben ___________________________ 74
1.13.1 Kommandant ______________________________________________________________ 74
1.13.1.1 Vorgeschichte und medizinische Befunde ____________________________________ 74
1.13.1.2 Rechtsmedizinsche Befunde_______________________________________________ 74
1.13.2 Copilot ___________________________________________________________________ 74
1.13.2.1 Vorgeschichte und medizinische Befunde ____________________________________ 74
1.13.2.2 Rechtsmedizinische Befunde ______________________________________________ 74
1.14 Feuer _______________________________________________________ 75
1.14.1 Untersuchung von Brandspuren an Flugzeugtrümmern _____________________________ 75
1.14.2 Resultate der Befragung von Augenzeugen ______________________________________ 75
1.15 Überlebensmöglichkeiten _______________________________________ 75
1.15.1 Allgemeines _______________________________________________________________ 75
1.15.2 Absturzvorgang ____________________________________________________________ 76
1.15.3 Alarmierung und Rettung_____________________________________________________ 76
1.15.4 Notsender _________________________________________________________________ 77
1.16 Weitere Forschungen___________________________________________ 77
1.16.1 Begriffe und Definitionen _____________________________________________________ 77
1.16.1.1 Visual Descent Point_____________________________________________________ 77
1.16.1.2 Missed Approach Point___________________________________________________ 77
1.16.1.3 Minimum Descent Altitude/Height __________________________________________ 77
1.16.2 Überprüfung des Standard VOR/DME Approach 28 ________________________________ 77
1.16.2.1 Einleitung _____________________________________________________________ 77
1.16.2.2 Initial Approach Segment_________________________________________________ 77
1.16.2.3 Intermediate Approach Segment___________________________________________ 78
1.16.2.4 Final Approach Segment _________________________________________________ 78
1.16.2.5 Missed Approach Segment________________________________________________ 79
1.16.2.6 Anflugkarte gemäss Schweizer Luftfahrthandbuch AIP__________________________ 79
1.16.2.7 Zusammenfassung ______________________________________________________ 79
1.16.3 Vergleichsflüge im Simulator __________________________________________________ 80
1.16.3.1 Allgemeines ___________________________________________________________ 80
1.16.3.2 Ergebnisse ____________________________________________________________ 80
1.17 Angaben zu verschiedenen Organisationen und deren Führung __________ 81
1.17.1 Flugbetriebsunternehmen Crossair _____________________________________________ 81
1.17.1.1 Allgemeines ___________________________________________________________ 81
1.17.1.2 Struktur des Bereichs Flight Operations _____________________________________ 82
1.17.1.3 Flugsicherheitsabteilung__________________________________________________ 83
1.17.1.4 Fliegerische Kultur ______________________________________________________ 84
1.17.1.5 Auswahlverfahren für Copiloten____________________________________________ 84
1.17.1.5.1 Vorgaben der Joint Aviation Requirements_________________________________ 84
1.17.1.5.2 Ablauf des Verfahrens bei Crossair _______________________________________ 86
1.17.1.6 Ausbildung in Crew Resource Management __________________________________ 88
1.17.1.7 Umschulungskurs auf das Flugzeugmuster MD 80 _____________________________ 88
1.17.1.8 Regelung bezüglich Besatzungszeiten und nebenberuflichen Tätigkeiten ___________ 89
1.17.1.9 Vorschriften bezüglich Sichtreferenzen bei Non Precision Approaches______________ 89
1.17.1.10 Localizer DME Anflug auf Piste 03 in Lugano (heute IGS approach Piste 01) ________ 91
1.17.1.11 Prozessabläufe im Flugzeugunterhalt _______________________________________ 92
1.17.1.11.1 Höhenmesser Wartung _______________________________________________ 92
1.17.1.11.2 DFDR Kalibrierung ___________________________________________________ 92
1.17.1.11.3 APU Trouble Shooting ________________________________________________ 93
1.17.2 Aufsichtsbehörde ___________________________________________________________ 93
1.17.2.1 Allgemeines ___________________________________________________________ 93
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 7 von 152
1.17.2.2 Struktur ______________________________________________________________ 93
1.17.2.3 Sicherheits-Audit durch die ICAO___________________________________________ 94
1.17.2.4 Vorschriften bezüglich Einsatzzeiten ________________________________________ 95
1.17.2.5 Verhältnis der Crossair zur Aufsichtsbehörde _________________________________ 95
1.17.3 Flugschule Horizon Swiss Flight Academy ________________________________________ 96
1.17.4 Flugsicherung ______________________________________________________________ 96
1.17.4.1 Allgemeines ___________________________________________________________ 96
1.17.4.2 Anflugleitstelle _________________________________________________________ 96
1.17.4.3 Platzverkehrsleitstelle____________________________________________________ 97
1.17.5 Flughafen Zürich AG (Unique) _________________________________________________ 97
1.17.5.1 Allgemeines ___________________________________________________________ 97
1.17.5.2 Vorfeldverkehrsleitung – Apron Control______________________________________ 97
1.17.5.3 Rolle von Unique bei der Umsetzung des Staatsvertrages Schweiz-Deutschland______ 97
1.17.5.4 Einfluss der Unique auf die Verkehrsabwicklung_______________________________ 98
1.17.6 MeteoSchweiz______________________________________________________________ 98
1.17.6.1 Allgemeines ___________________________________________________________ 98
1.17.6.2 Prozess Flugwetter ______________________________________________________ 99
1.17.6.3 Flugwetterdienst auf dem Flughafen Zürich __________________________________ 99
1.18 Zusätzliche Angaben __________________________________________ 100
1.18.1 Trainingsgeräte ___________________________________________________________ 100
1.18.2 Eintragung von Flughindernissen in Anflugkarten_________________________________ 100
1.18.3 Relevante Sicherheitsempfehlungen aus früheren Untersuchungen___________________ 100
1.18.3.1 Einleitung ____________________________________________________________ 100
1.18.3.2 Unfall Alitalia Flugnummer AZA 404 am Stadlerberg, Zürich ____________________ 100
1.18.3.3 Unfall Crossair Flugnummer CRX 498 bei Nassenwil, Zürich_____________________ 101
1.19 Neue Untersuchungsmethoden __________________________________ 101
1.19.1 Analyse von Non Volatile Memories____________________________________________ 101
1.19.1.1 Einleitung ____________________________________________________________ 101
1.19.1.2 Digital Air Data Computer _______________________________________________ 102
1.19.1.3 EFIS Symbol Generator Unit _____________________________________________ 102
1.19.1.4 Digital Flight Guidance Computer _________________________________________ 102
2 Analyse __________________________________________________ 103
2.1 Technische Aspekte ___________________________________________ 103
2.1.1 Flight Guidance System _____________________________________________________ 103
2.1.1.1 Electronic Flight Instrument System _________________________________________ 103
2.1.1.1.1 Zuverlässigkeit_______________________________________________________ 103
2.1.1.1.2 Verfügbarkeit während des Unfallfluges ___________________________________ 103
2.1.1.2 Auto Flight System _______________________________________________________ 103
2.1.1.2.1 Zuverlässigkeit_______________________________________________________ 103
2.1.1.2.2 Verfügbarkeit während des Unfallfluges ___________________________________ 103
2.1.1.3 Navigation Management System ____________________________________________ 104
2.1.1.3.1 Zuverlässigkeit_______________________________________________________ 104
2.1.1.3.2 Verfügbarkeit während des Unfallfluges ___________________________________ 104
2.1.2 Flugzeugsteuerung_________________________________________________________ 105
2.1.3 Navigationsausrüstung______________________________________________________ 105
2.1.3.1 Inertial Reference System _________________________________________________ 105
2.1.3.1.1 Zuverlässigkeit_______________________________________________________ 105
2.1.3.1.2 Verfügbarkeit während des Unfallfluges ___________________________________ 105
2.1.3.2 VHF-Navigationssystem ___________________________________________________ 105
2.1.3.2.1 Zuverlässigkeit_______________________________________________________ 105
2.1.3.2.2 Verfügbarkeit während des Unfallfluges ___________________________________ 105
2.1.3.3 Entfernungsmessgerät – Distance Measuring Equipment _________________________ 106
2.1.3.3.1 Zuverlässigkeit_______________________________________________________ 106
2.1.3.3.2 Verfügbarkeit während des Unfallfluges ___________________________________ 106
2.1.3.4 Air Data System _________________________________________________________ 106
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 8 von 152
2.1.3.4.1 Zuverlässigkeit_______________________________________________________ 106
2.1.3.4.2 Verfügbarkeit während des Unfallfluges ___________________________________ 106
2.1.3.5 Radarhöhenmesser_______________________________________________________ 107
2.1.3.5.1 Zuverlässigkeit_______________________________________________________ 107
2.1.3.5.2 Verfügbarkeit während des Unfallfluges ___________________________________ 107
2.1.3.6 ATC Transponder System__________________________________________________ 107
2.1.3.6.1 Zuverlässigkeit_______________________________________________________ 107
2.1.3.6.2 Verfügbarkeit während des Unfallfluges ___________________________________ 107
2.1.4 Unterhalt_________________________________________________________________ 107
2.1.5 Lufttüchtigkeit ____________________________________________________________ 108
2.1.6 Überlebensmöglichkeiten ____________________________________________________ 108
2.2 Menschliche, betriebliche und organisatorische Aspekte_______________ 108
2.2.1 Das „SHEL“-Modell _________________________________________________________ 108
2.2.2 Kommandant (L) __________________________________________________________ 109
2.2.2.1 Vorgeschichte___________________________________________________________ 109
2.2.2.2 Verhalten während des Unfallfluges _________________________________________ 111
2.2.2.3 Medizinische Aspekte _____________________________________________________ 112
2.2.3 Copilot (L)________________________________________________________________ 113
2.2.3.1 Allgemeines ____________________________________________________________ 113
2.2.3.2 Medizinische Aspekte _____________________________________________________ 114
2.2.4 Zusammenwirken zwischen Kommandant und Copilot (L-L) ________________________ 114
2.2.4.1 Allgemeines ____________________________________________________________ 114
2.2.4.2 Fortsetzung des Fluges unter die Mindesthöhe für den Anflug_____________________ 114
2.2.4.3 Crew Resource Management _______________________________________________ 115
2.2.5 Zusammenwirken zwischen Flugbesatzung und Flugzeug (L-H)______________________ 116
2.2.5.1 Allgemeines ____________________________________________________________ 116
2.2.5.2 Einsatz der Flugführungs- und Navigationsausrüstung ___________________________ 116
2.2.5.3 Warnungen_____________________________________________________________ 118
2.2.5.4 Call Outs _______________________________________________________________ 119
2.2.5.5 Fehlende Hindernisse auf den Anflugkarten ___________________________________ 119
2.2.6 Beziehung zwischen Flugbesatzung und Verfahren (L-S) ___________________________ 119
2.2.6.1 Allgemeines ____________________________________________________________ 119
2.2.6.2 Übergang vom Instrumentenflug zum Sichtflug ________________________________ 119
2.2.6.3 Konfiguration während eines non precision approach____________________________ 120
2.2.6.4 Altitude setting während eines non precision approach __________________________ 120
2.2.7 Schnittstelle Flugbesatzung – Umgebung (L-E)___________________________________ 121
2.2.7.1 Allgemeines ____________________________________________________________ 121
2.2.7.2 Voraus fliegende Flugzeuge ________________________________________________ 121
2.2.7.3 Wettersituation und Wetterminima __________________________________________ 121
2.2.7.4 Flugsicherung ___________________________________________________________ 122
2.2.7.4.1 Personaleinsatz ______________________________________________________ 122
2.2.7.4.2 Auswahl des Anflugverfahrens __________________________________________ 122
2.2.7.4.3 Durchführung des Standard VOR/DME Approach 28 _________________________ 123
2.2.7.4.4 Radarüberwachung ___________________________________________________ 123
2.2.7.4.5 Minimum Safe Altitude Warning System___________________________________ 123
2.2.7.5 Auslegung des Anfluges___________________________________________________ 123
2.2.7.6 Flugbetriebsunternehmen _________________________________________________ 124
2.2.7.7 Aufsichtsbehörde ________________________________________________________ 125
3 Schlussfolgerungen_________________________________________ 127
3.1 Befunde ____________________________________________________ 127
3.1.1 Technische Aspekte ________________________________________________________ 127
3.1.2 Besatzung________________________________________________________________ 127
3.1.3 Flugverlauf _______________________________________________________________ 128
3.1.4 Rahmenbedingungen _______________________________________________________ 129
3.2 Ursachen ___________________________________________________ 130
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 9 von 152
4 Sicherheitsempfehlungen und Massnahmen zur Verbesserung der
Flugsicherheit _____________________________________________ 132
4.1 Sicherheitsempfehlungen vom 11. April 2002 _______________________ 132
4.1.1 Crewpairing – Zusammenstellung von Flugbesatzungen ___________________________ 132
4.1.1.1 Sicherheitsdefizit ________________________________________________________ 132
4.1.1.2 Sicherheitsempfehlung 2002-1 (Nr. 33) ______________________________________ 132
4.1.1.3 Stellungnahme des Bundesamtes für Zivilluftfahrt vom 6. Mai 2002 ________________ 132
4.1.2 Überprüfung der Leistungen von Piloten ________________________________________ 133
4.1.2.1 Sicherheitsdefizit ________________________________________________________ 133
4.1.2.2 Sicherheitsempfehlung 2002-2 (Nr. 34) ______________________________________ 133
4.1.2.3 Stellungnahme des Bundesamtes für Zivilluftfahrt vom 6. Mai 2002 ________________ 133
4.1.2.4 Sicherheitsempfehlung 2002-3 (Nr. 35) ______________________________________ 134
4.1.2.5 Stellungnahme des Bundesamtes für Zivilluftfahrt vom 6. Mai 2002 ________________ 134
4.1.3 Altitude Setting während eines Non Precision Approach____________________________ 135
4.1.3.1 Sicherheitsdefizit ________________________________________________________ 135
4.1.3.2 Sicherheitsempfehlung 2002-4 (Nr. 36) ______________________________________ 135
4.1.3.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 6. Mai 2002 __________ 135
4.1.4 Terrain Awareness and Warning System________________________________________ 136
4.1.4.1 Sicherheitsdefizit ________________________________________________________ 136
4.1.4.2 Sicherheitsempfehlung 2002-5 (Nr. 37) ______________________________________ 136
4.1.4.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 6. Mai 2002 __________ 136
4.1.5 System der Wetterbeobachtung ______________________________________________ 137
4.1.5.1 Sicherheitsdefizit ________________________________________________________ 137
4.1.5.2 Sicherheitsempfehlung 2002-6 (Nr. 38) ______________________________________ 137
4.1.5.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 5. Dezember 2003_____ 137
4.1.6 Installation eines Minimum Safe Altitude Warning System (MSAW) für den Anflugsektor der
Piste 28 in Zürich-Kloten ____________________________________________________________ 138
4.1.6.1 Sicherheitsdefizit ________________________________________________________ 138
4.1.6.2 Sicherheitsempfehlung 2002-7 (Nr. 39) ______________________________________ 138
4.1.6.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 5. Dezember 2003_____ 138
4.1.7 Eintragung von Flughindernissen im Jeppesen Route Manual _______________________ 139
4.1.7.1 Sicherheitsdefizit ________________________________________________________ 139
4.1.7.2 Sicherheitsempfehlung 2002-8 (Nr. 40) ______________________________________ 139
4.1.7.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 5. Dezember 2003_____ 139
4.2 Sicherheitsempfehlungen vom 2. Oktober 2003 _____________________ 140
4.2.1 Definition und Publikation eines Visual Descent Points _____________________________ 140
4.2.1.1 Sicherheitsdefizit ________________________________________________________ 140
4.2.1.2 Sicherheitsempfehlung Nr. 94 ______________________________________________ 140
4.2.1.3 Stellungnahme des BAZL __________________________________________________ 140
4.2.2 Publizierte Mindestsichtweiten bei Non Precision Approaches _______________________ 140
4.2.2.1 Sicherheitsdefizit ________________________________________________________ 140
4.2.2.2 Sicherheitsempfehlung Nr. 95 ______________________________________________ 140
4.2.2.3 Stellungnahme des BAZL __________________________________________________ 140
4.2.3 Darstellung des Geländeprofils auf Anflugkarten _________________________________ 140
4.2.3.1 Sicherheitsdefizit ________________________________________________________ 140
4.2.3.2 Sicherheitsempfehlung Nr. 96 ______________________________________________ 140
4.2.3.3 Stellungnahme des BAZL __________________________________________________ 141
4.2.4 Besatzungszeiten __________________________________________________________ 141
4.2.4.1 Sicherheitsdefizit ________________________________________________________ 141
4.2.4.2 Sicherheitsempfehlung Nr. 97 ______________________________________________ 141
4.2.4.3 Stellungnahme des BAZL __________________________________________________ 141
4.2.5 Verbesserung des Qualitätsystems von Flugbetriebsunternehmen____________________ 141
4.2.5.1 Sicherheitsdefizit ________________________________________________________ 141
4.2.5.2 Sicherheitsempfehlung Nr. 98 ______________________________________________ 141
4.2.5.3 Stellungnahme des BAZL __________________________________________________ 141
4.2.6 Abnahme von Fähigkeitsnachweisen und Befähigungsüberprüfungen _________________ 142
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 10 von 152
4.2.6.1 Sicherheitsdefizit ________________________________________________________ 142
4.2.6.2 Sicherheitsempfehlung Nr. 99 ______________________________________________ 142
4.2.6.3 Stellungnahme des BAZL __________________________________________________ 142
4.3 Seit dem Unfall getroffene Massnahmen zur Verbesserung der Flugsicherheit___________________________________________________
143
4.3.1 Stellungnahme von Swiss vom 14. Februar 2003 _________________________________ 143
4.3.2 Stellungnahme von Swiss vom 8. Dezember 2003 ________________________________ 146
Anhang 1: Zeitliche Abfolge wesentlicher Ereignisse
Anhang 2: Eingebauter Oil Indicator
Anhang 3: Warning Envelope of the Ground Proximity Warning System (GPWS)
Anhang 4: Anflugprofil des Unfallfluges CRX 3597
Anhang 5: Rekonstruktion des Anfluges auf Piste 28 im Simulator
Anhang 6: Localizer DME Piste 03 in Lugano (heute IGS approach Piste 01)
Anhang 7: Anflugkarte des Schweizer Luftfahrthandbuches AIP, LSZH AD 2.24.10.7-1
Anhang 8: Anflugkarte 13-2 Zürich, Schweiz, Jeppesen Inc.
Anhang 9: Graphische Zusammenstellung der Resultate von line, route und
simulator checks des Kommandanten
Anhang 10: Detailliertes Anflugprofil des Fluges CRX 3597
Anhang 11: Graphische Darstellung des final segment des standard VOR/DME approach 28
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 11 von 152
Schlussbericht
Halter: Crossair Limited Company for Regional European
Air Transport, CH-4002 Basel
Flugzeugmuster und Ausführung: AVRO 146-RJ100
Eintragungsstaat: Schweiz
Eintragungszeichen: HB-IXM
Eigentümer: Crossair Limited Company for Regional European
Air Transport, CH-4002 Basel
Unfallort: Geissbühl, Gemeinde Bassersdorf ZH
Koordinaten der ersten Baumberührung:
Schweizer Koordinaten: 689 607/256 564
Geographische Breite: N 47° 27’ 14’’
Geographische Länge: E 008° 37’ 37’’
Höhe der Baumwipfel: 565 m/M
1854 ft AMSL
Mittlere Koordinaten der Wrackendlage:
Schweizer Koordinaten: 689 350/256 600
Geographische Breite: N 47° 27’ 15’’
Geographische Länge: E 008° 37’ 24’’
Ortshöhe: 515 m/M
1690 ft AMSL
4050 m vor Beginn der Piste 28 des Flughafens
Zürich, 150 m nördlich der Pistenachse
Datum und Zeit: 24. November 2001 um 21:07 UTC
Zusammenfassung
Kurzdarstellung
Am 24. November 2001 startete um 20:01 UTC, in Dunkelheit, auf der Piste 26L des
Flughafens Berlin-Tegel das Flugzeug AVRO 146-RJ100 mit dem Eintragungszeichen
HB-IXM der Fluggesellschaft Crossair, zum Linienflug CRX 3597 nach Zürich.
Um 20:58:50 UTC erhielt die Maschine, nach einem ereignislosen Flug, die Freigabe für
einen standard VOR/DME approach 28 des Flughafens Zürich.
Vor dem Unfallflugzeug landete eine Embraer EMB 145 mit der Flugnummer CRX 3891
auf der Piste 28 des Flughafens Zürich. Die Besatzung meldete dem Kontrollturm, dass
das Wetter annähernd dem Minimum für diese Piste entspreche.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 12 von 152
Um 21:05:21 UTC meldete sich Flug CRX 3597 auf der Frequenz der Platzverkehrsleitstelle.
Als die Maschine um 21:06:10 UTC die minimum descent altitude (MDA) von
2390 ft QNH erreichte, erwähnte der Kommandant gegenüber dem Copiloten, dass er
über eine gewisse Sicht auf den Boden verfüge und setzte den Sinkflug fort.
Um 21:06:36 UTC kollidierte das Flugzeug mit Baumwipfeln und schlug anschliessend
auf dem Boden auf.
Bei diesem Aufprall fing das Flugzeug Feuer. 21 Fluggäste und drei Besatzungmitglieder
erlagen ihren Verletzungen auf der Unfallstelle, sieben Passagiere und zwei Besatzungsmitglieder
überlebten den Unfall.
Untersuchung
Das Büro für Flugunfalluntersuchungen (BFU) bildete eine Untersuchungsgruppe zur
Untersuchung von Flugunfällen von Grossflugzeugen mit Katastrophencharakter.
Gemäss Anhang 13 des Abkommens über die Internationale Zivilluftfahrt (ICAO Annex
13) haben die Herstellerstaaten des Flugzeuges und die Heimatländer der Fluggäste
die Möglichkeit, bevollmächtigte Vertreter zur Untersuchung zu entsenden. Von dieser
Möglichkeit machten das Vereinigte Königreich Grossbritannien und Nordirland (UK) als
Herstellerstaat des Flugzeuges und die Bundesrepublick Deutschland (BRD) als Vertreter
von hinterbliebenen deutschen Staatsangehörigen Gebrauch.
Der Unfall ist darauf zurückzuführen, dass die Maschine im Endanflug des standard
VOR/DME approach 28 in Eigennavigation gegen einen bewaldeten Höhenzug flog
(controlled flight into terrain – CFIT), weil die Flugbesatzung unter Instrumentenflugbedingungen
den Sinkflug unter die Mindesthöhe für den Anflug fortsetzte, ohne über
die dazu notwendigen Voraussetzungen zu verfügen. Die Flugbesatzung leitete das
Durchstartmanöver zu spät ein.
Die Untersuchung hat folgende kausale Faktoren für den Unfall ermittelt:
• Der Kommandant unterschritt die Mindesthöhe für den Anflug (minimum descent
altitude – MDA) des standard VOR/DME approach 28, ohne über Sichtkontakt zur
Anflugbefeuerung bzw. zur Piste zu verfügen.
• Der Copilot unternahm keinen Versuch, die Weiterführung des Fluges unter die minimum
descent altitude zu verhindern.
Folgende Faktoren haben zur Entstehung des Unfalls beigetragen:
• Im Anflugsektor der Piste 28 des Flughafens Zürich war kein System vorhanden,
welches bei Unterschreitung einer Sicherheitsmindesthöhe einen Alarm auslöst (minimum
safe altitude warning – MSAW).
• Die Verantwortlichen des Flugbetriebsunternehmens haben über lange Zeit die fliegerische
Leistung des Kommandanten nicht zutreffend bewertet. Dort wo Schwächen
erkennbar waren, ergriffen sie keine zweckmässigen Massnahmen.
• Das Konzentrations- und Entscheidungsvermögen des Kommandanten sowie seine
Fähigkeit zur Analyse komplexer Vorgänge waren aufgrund von Übermüdung beeinträchtigt.
• Die Aufgabenverteilung der Flugbesatzung während des Anfluges war nicht zweckmässig
und entsprach nicht den Verfahrensvorgaben des Flugbetriebsunternehmens.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 13 von 152
• Der Höhenzug, den das Flugzeug berührte, war auf der Anflugkarte, welche die
Flugbesatzung verwendet hatte, nicht eingetragen.
• Die auf dem Flughafen ermittelte meteorologische Sicht war für den Anflug auf Piste
28 nicht repräsentativ, weil sie nicht der tatsächlichen Flugsicht im Anflugsektor
entsprach.
• Die zum Unfallzeitpunkt gültigen Sichtminima, um den standard VOR/DME approach
28 in Betrieb zu nehmen, waren unzweckmässig.
Im Rahmen der Untersuchung wurden durch das Büro für Flugunfalluntersuchungen
dreizehn Sicherheitsempfehlungen zu folgenden Themen ausgesprochen:
• Altitude setting während eines non precision approach
• Terrain awareness and warning system
• System der Wetterbeobachtung
• Installation eines minimum safe altitude warning (MSAW) system für den Anflugsektor
der Piste 28 in Zürich Kloten
• Eintragung von Flughindernissen im Jeppesen route manual
• Publikation eines visual descent points
• Mindestsichtweiten bei non precision approaches
• Geländeprofil auf Anflugkarten
• Crewpairing – Zusammenstellung von Flugbesatzungen
• Überprüfung der Leistungen von Piloten
• Besatzungszeiten
• Verbesserung des Qualitätssystems von Flugbetriebsunternehmen
• Abnahme von Fähigkeitsnachweisen und Befähigungsüberprüfungen
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 14 von 152
1 Festgestellte Tatsachen
1.1 Vorgeschichte und Flugverlauf
1.1.1 Vorgeschichte
1.1.1.1 Flugzeug
Das Flugzeug HB-IXM führte unmittelbar vor dem Unfall die folgenden Flüge durch:
Datum Flugnummer
Flug von Startzeit
(UTC)
Flug nach Landezeit
(UTC)
23.11.01 LX 209 Tessaloniki 03:00 Zürich 06:02
23.11.01 LX 3532 Zürich 06:57 Frankfurt 08:00
23.11.01 LX 3533 Frankfurt 09:12 Zürich 10:09
23.11.01 LX 3234 Zürich 11:17 Tunis 13:05
23.11.01 LX 3235 Tunis 14:00 Zürich 16:22
23.11.01 LX 3628 Zürich 17:37 Mailand 18:35
23.11.01 LX 3629 Mailand 19:10 Zürich 20:01
23.11.01 LX 208 Zürich 20:57 Tessaloniki 23:17
24.11.01 LX 209 Tessaloniki 03:10 Zürich 06:03
24.11.01 LX 3790 Zürich 07:00 Amsterdam 08:25
24.11.01 LX 3791 Amsterdam 08:55 Zürich 10:10
24.11.01 LX 3450 Zürich 11:15 Ljubliana 12:14
24.11.01 LX 3451 Ljubliana 13:03 Zürich 14:09
24.11.01 LX 3596 Zürich 17:54 Berlin-Tegel 19:30
In der deferred defect list (DDL) fanden sich folgende Eintragungen:
• ATA 21 Flt. Deck temp. in auto mode difficult to control. In full cool duct
temp. rises up to 70 – 80°.
Please use man. temp. control, xfer to DD acc MEL 21-60-5.
• ATA 49 Crew reported APU needs always two attempts to start.
Following parts are already replaced:
• Igniter plugs
• Fuel filter
• Start fuel manifold
• FCU
• APU bleed valve
• Start solenoid
Further T/S needed.
• ATA 30 Please perform reinspection of aileron and elevator after use of deicing
fluid type IV acc. P/H 1.3 “WINTER OPS”.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 15 von 152
1.1.1.2 Flugbesatzung
1.1.1.2.1 Kommandant
Am 23. November 2001 traf sich der Kommandant ungefähr um 05:00 UTC im general
aviation center (GAC) des Flughafens Zürich mit einem Flugschüler. Dieser Zeitpunkt
entspricht dem Beginn seiner fliegerischen Tätigkeit an diesem Tag. Zwischen 06:15
UTC und 07:20 UTC führte er mit diesem einen Schulungsflug nach Instrumentenflugregeln
(instrument flight rules – IFR) im Auftrag der Flugschule Horizon Swiss Flight
Academy nach Friedrichshafen (D) durch. Um 07:34 UTC traten die beiden den Rückflug
nach Zürich an, wo sie um 08:57 UTC eintrafen.
Anschliessend war der Kommandant für vier Linienflüge bei der Crossair eingesetzt.
Zwischen 11:02 UTC und 13:09 UTC führte er einen Flug nach Tirana (AL) durch. Der
Rückflug nach Zürich dauerte von 13:53 UTC bis 16:16 UTC. Um 17:37 UTC startete
der Kommandant erneut zu einem Linienflug nach Milano-Malpensa (I), wo die Landung
um 18:35 UTC erfolgte. Um 19:10 UTC flog der Kommandant wieder zurück nach
Zürich. Nach der Landung um 20:01 UTC beendete er seinen Dienst um 20:31 UTC
nach einer gesamten Flugdienstzeit von 15 Stunden und 31 Minuten. Aufgrund des
Wohnorts des Kommandanten musste unter günstigen Verkehrsbedingungen mit
einem Arbeitsweg von ungefähr einer halben Stunde gerechnet werden.
Am 24. November 2001 traf der Kommandant nach einer Ruhezeit von 10 Stunden und
59 Minuten um 07:30 UTC wieder im GAC des Flughafens Zürich ein, um mit einer
Flugschülerin einen IFR-Ausbildungsflug im Auftrag der Flugschule Horizon Swiss Flight
Academy durchzuführen. Der Abflug von Zürich erfolgte um 09:34 UTC und die Landung
in Donaueschingen-Villingen (D) um 10:20 UTC. Eine halbe Stunde später, um
10:50 UTC, flogen die beiden nach Friedrichshafen (D) weiter, wo sie um 11:36 UTC
landeten. Der Rückflug von Friedrichshafen nach Zürich dauerte von 11:53 UTC bis um
12:27 UTC. Wie die Flugschülerin ausführte, war die Nachflugbesprechung (debriefing)
um 13:30 UTC beendet.
Der Abflug von Crossair Flugnummer CRX 3596 nach Berlin-Tegel war für 17:20 UTC
vorgesehen und erfolgte um 17:54 UTC.
1.1.1.2.2 Copilot
Am 23. November 2001 war der Copilot bei Crossair auf vier Linienflügen eingesetzt. Er
trat seinen Dienst um 11:50 UTC an und verliess Zürich um 13:23 UTC Richtung Budapest
(H), wo seine Maschine um 15:04 UTC landete. Zwischen 16:07 UTC und 17:45
UTC flog der Copilot nach Zürich zurück und anschliessend um 18:40 UTC weiter nach
Düsseldorf (D). Die Landung in Düsseldorf erfolgte um 20:05 UTC und der Rückflug
nach Zürich begann um 20:30 UTC. Um 21:35 UTC landete der Copilot in Zürich und
beendete seinen Dienst nach einer Flugdienstzeit von 10 Stunden und 15 Minuten um
22:05 UTC. Für die Fahrt zwischen seinem Wohnort und dem Flughafen Zürich sind
ungefähr 45 Minuten zu veranschlagen.
Die Lebenspartnerin des Copiloten gab zu Protokoll, dass der Copilot diesen Arbeitstag
als sehr anstrengend bezeichnet und sich sehr erschöpft gefühlt habe.
Nach einer Ruhezeit von 18 Stunden und 15 Minuten begann der Copilot am 24. November
2001 um 16:20 UTC seinen Dienst auf dem Flughafen Zürich. Der Abflug von
Crossair Flugnummer CRX 3596 nach Berlin-Tegel war für 17:20 UTC vorgesehen und
erfolgte um 17:54 UTC.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 16 von 152
1.1.2 Flugverlauf
1.1.2.1 Flugvorbereitung
Unmittelbar vor dem Unfallflug war das Flugzeug HB-IXM am 24. November 2001 für
den Linienflug CRX 3596 von Zürich nach Berlin-Tegel eingesetzt, wo es um 19:25 UTC
landete. Die Besatzung war dieselbe wie auf dem folgenden Sektor mit Flugnummer
CRX 3597. Nach der Landung in Berlin erreichte die Maschine um 19:30 UTC, d.h. 40
Minuten nach der geplanten Zeit, die Fluggastbrücke 11 und die Passagiere verliessen
das Flugzeug. Es wurde keine Betankung durchgeführt, da die Maschine noch über
einen Treibstoffvorrat (actual block fuel) von 5650 kg verfügte. Für den Rückflug war
laut Planung ein Treibstoffbedarf (minimum block fuel) von 4893 kg vorgesehen. Standardmässig
wurde das retourcatering auf dem Hinflug mitgeführt.
Während der Bodenzeit fand eine Reinigung der Fluggastkabine statt. Der ramp handling
agent übermittelte der Besatzung das load sheet. Gemäss diesem Mitarbeiter verliess
der Kommandant das Flugzeug, vermutlich um eine routinemässige Aussenkontrolle
durchzuführen. Zwischen dem Kommandanten und dem ramp handling agent
fand ein kurzes Gespräch statt. Letzterer beschrieb das Verhalten des Kommandanten
als normal. Insbesondere fielen ihm keine Anzeichen von Stress oder Eile auf. Während
der Bodenzeit verblieb der Copilot in der Maschine.
Für den Flug CRX 3597 wurden 28 Passagiere und 23 Gepäckstücke eingecheckt. Aufgrund
der Buchung waren 49 Passagiere vorgesehen. Eine Gruppe von 21 Reisenden
erschien nicht. Es wurde keine Fracht transportiert. Zwischen 19:40 UTC und 19:45
UTC bestiegen die Passagiere das Flugzeug.
1.1.2.2 Der Flug von Berlin-Tegel nach Zürich
Der Kommandant war pilot flying (PF) und der Copilot war pilot not flying (PNF) und
damit unter anderem während des gesamten Fluges für den Funkverkehr mit den Flugverkehrsleitstellen
verantwortlich.
Sämtliche Funkgespräche zwischen den verschiedenen Flugverkehrsleitstellen und der
Besatzung von Flug CRX 3597 während des Fluges von Berlin-Tegel nach Zürich wurden
auf Englisch geführt. Die Gespräche zwischen den Besatzungsmitgliedern im Cockpit
fanden vorwiegend auf Schweizerdeutsch statt. Es liegen weder Hinweise auf Missverständnisse
zwischen den beiden Piloten, noch auf Missverständnisse zwischen den
Flugverkehrsleitern und der Besatzung vor.
Um 19:48 UTC verlangte die Besatzung die Anlassfreigabe (start up clearance) und den
push back. Sie bestätigte dabei, die ATIS-Meldung „GOLF“ erhalten zu haben. Die ATCStelle
ground informierte die Besatzung, dass zum gegenwärtigen Zeitpunkt die ATISInformation
„INDIA“ gültig sei und erteilte die Freigabe zum Anlassen der Triebwerke.
Zusammen mit dem standard instrument departure (SID) „Magdeburg 4L“ wurde der
Transpondercode 3105 zugewiesen.
Um 19:50 UTC, d.h. 10 Minuten nach der geplanten Zeit, wurde die Fluggastbrücke 11
entfernt und zwei Minuten später konnte CRX 3597 zurückgeschoben werden, nachdem
an der benachbarten Fluggastbrücke 10 ein anderes Flugzeug angedockt hatte.
Um 19:56 UTC wurde die Maschine angewiesen „via the bridge“ zur holding position
der Piste 26L zu rollen. Nachdem die Maschine die Freigabe zum Eindrehen auf die Piste
erhalten hatte, blieben die Rollhaltebalken der Piste 26L weiter eingeschaltet. Die
Besatzung beanstandete dies und rollte erst nach dem Verlöschen der Rollhaltebalken
auf die Piste. Um 20:01 UTC hob CRX 3597 von der Startbahn ab und wurde später
von der Abflugleitstelle nach Flugfläche (flightlevel – FL) 160 freigegeben.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 17 von 152
Sowohl die Funkgespräche als auch das Flugprofil dieser ersten Phase des Fluges zeigten
keine Besonderheiten.
Die Aufzeichnungen des cockpit voice recorder (CVR) reichen zurück bis 20:36 UTC. Zu
diesem Zeitpunkt flog die Maschine auf FL 270 im Kontrollbereich von Rhein Radar.
Zwischen 20:36:48 UTC und 20:37:23 UTC entschlüsselte der Copilot den Pistenzustandsbericht
des Flughafens Zürich. Auf die Feststellung, dass die Bremswirkung nicht
angegeben sei, reagierte der Kommandant mit einer rund zwei Minuten dauernden
ausführlichen Erklärung über die Interpretation eines Pistenzustandsberichts.
Um 20:40 UTC wurde das Flugzeug für einen Sinkflug nach FL 240 freigegeben. Um
20:42 UTC erfolgte die Freigabe für einen weiteren Sinkflug nach FL 160. In dieser
Phase erklärte der Kommandant als PF dem Copiloten, wie der Anflug zur Landung
durchgeführt werden sollte (approach briefing). Die Grundlage seiner Besprechung bildete
die Erwartung eines Instrumentenanfluges auf Piste 14 (ILS 14) in Zürich-Kloten
nach Standardverfahren. Während dieses approach briefing wies der Copilot um
20:43:44 UTC auf eine zu hohe Geschwindigkeit hin: „Mer chömed glaub mit de speed
ächli in rote Bereich ine“. – Wir kommen, glaube ich, mit der speed etwas in den roten
Bereich. Der Kommandant antwortete: „Ja, ja, ja, uuh, ja, isch mer devo gloffe, sorry.
Mues en echli zrugg näh… so, das isch… zwenig zrugg gschruubet, hä“. – Ja, ja, ja,
uuh, ja, ist mir davongelaufen, sorry. Muss ihn etwas zurück nehmen… so… das ist…
zuwenig zurück geschraubt, hä. Die Einstellung der Navigationsinstrumente (NAV setting)
überliess der Kommandant dem Copiloten: „Denn, äh, s’NAV setting isch up to
you. Final NAV setting wär zwei Mal d’ILS“ – Dann, äh, das NAV setting ist up to you.
Final NAV setting wäre zwei Mal die ILS.
Die Besatzung hatte zwischen 20:20 UTC und 20:36 UTC die ATIS-Meldung „KILO“
empfangen, welche einen Anflug über das Instrumentenlandesystem auf Piste 14 vorsah.
Um 20:40:10 UTC wechselte die ATIS-Ausstrahlung auf den Kennbuchstaben
„LIMA“, beinhaltend die Änderung der Landepiste mit: „Landing runway 28, VOR/DME
standard approach“. Ab 20:44:56 UTC wurde die ATIS-Meldung „MIKE“ ausgestrahlt,
welche gegenüber „LIMA“ eine zeitliche Aufdatierung des runway report umfasste. Dieser
runway report wies jedoch keine inhaltliche Änderung zum vorhergehenden auf.
Um 20:44:38 UTC nahm CRX 3597 mit der Flugverkehrsleitstelle Zurich Radar Kontakt
auf und führte ihren Sinkflug nach FL 160 fort. Die Besatzung wurde angewiesen, die
Geschwindigkeit auf 240 KIAS zu verringern. Nachdem die Besatzung zwischenzeitlich
angewiesen worden war, nach FL 130 abzusinken, erfolgte um 20:47:56 UTC die
Übergabe an Zurich Arrival East Sector. Bei der ersten Verbindungsaufnahme bestätigte
der Copilot den Empfang von ATIS-Meldung „KILO“. Der Flugverkehrsleiter
wies die Besatzung nicht darauf hin, dass inzwischen ATIS-Meldung „MIKE“ gültig war.
Er informierte CRX 3597 über die inhaltliche Änderung gegenüber ATIS-Meldung „KILO“,
dass für sie ein standard VOR/DME approach 28 vorgesehen sei. Der Kommandant
äusserte um 20:48:39 UTC: „Ou *****1, das äno, guet, ok“ – Oh, *****, das
auch noch, gut ok.
Um 20:50:00 UTC trat die ATIS-Meldung „NOVEMBER“ in Kraft. Die Änderungen betrafen
unter anderem eine auf 3500 m verbesserte meteorologische Sicht und ein Absinken
der Hauptwolkenuntergrenze (ceiling) auf 5-7/8 bei 1500 ft AAL. Diese Änderungen
wurden der Besatzung durch den Flugverkehrsleiter von Zurich Arrival East Sector
nicht mitgeteilt.
1 Ausdrücke, die eine spontane persönliche Bewertung der gegenwärtigen Situation darstellen sowie persönliche
Äusserungen ohne direkten Bezug zum Unfallgeschehen werden mit ***** gekennzeichnet.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 18 von 152
Kurze Zeit später wurde CRX 3597 angewiesen, über den Wegpunkt RILAX in eine
Warteschleife einzufliegen. In der Warteschleife fliegend, führte der Kommandant zwischen
20:51:56 UTC und 20:52:52 UTC ein approach briefing für den standard
VOR/DME approach 28 durch: „Guet, dän gäb’s es re-briefing runway two eight… das
wär d’Charte drizäh zwei. Kännsch guet de achtezwänzger Aaflug?“ – Gut, dann gäbe
es ein re-briefing runway two eight… das wäre die Karte 13-2. Kennst Du gut den
Achtundzwanziger Anflug? Worauf der Copilot antwortete: „Ja, i has e paar mal scho
gmacht, gell“ – Ja, ich habe es ein paar Mal schon gemacht, gell. Der Kommandant
fuhr daraufhin fort: „Es gaat via Trasadinge, Züri Oscht sächstuusig Fuess, dänn abe uf
föiftuusig, dänn turn inbound to Chlote radial Zwei Föifesibzig.“ – Es geht via Trasadingen,
Zürich Ost 6000 Fuss, dann hinunter auf 5000, dann turn inbound to Kloten radial
275. Der Copilot bestätigte: „Jawohl“ und der Kommandant erklärte weiter: „Wämer en
self line-up würd mache, heted mer föiftuusig nach Züri Oscht, dänn viertuusig abe.
Wämer de turn macht bi Ko… Komma Sächs Meile, Sächs Komma Föif Meile left turn
und dänn dä Aafluug da gemäss Profiil: Viertuusig verlah bi acht Meile und bi sächs
Meile Drüü Drüü Sächzig und s’neu Minimum isch Zwei Drüü Nünzig mit drüühundert
am radio altimeter. Go around via Chlote radial Two Füfefüffzg intercept Zero One Two
from Wilisau proceed to EKRIT climb to six thousand feet uf der APA.” – Wenn wir einen
self line-up machen würden, dann hätten wir 5000 nach Zürich Ost, dann (auf)
4000 hinunter. Wenn man den turn macht bei Ko… Komma Sechs Meilen, Sechs Komma
Fünf Meilen, left turn und dann den Anflug gemäss Profil: 4000 verlassen bei 8 Meilen
und bei 6 Meilen 3360 und das neue Minimum ist 2390 mit 300 am radio altimeter.
(Crossair-Verfahren: Der Radarhöhenmesser wurde für non precision and visual approaches
auf 300 ft RA gestellt.) Go around via Kloten radial 255, intercept 012 from Wilisau
proceed to EKRIT climb to 6000 auf der APA. Der Copilot bestätigte das Verfahren
mit: “Jawohl checked, jawohl”.
Die Einstellung der Navigationsinstrumente wurde wie folgt besprochen: „S’NAV-setting
bitte zweimal Chloote für de approach bis deet ane isch’s up to you, hä“ – Das NAVsetting:
Bitte zweimal Kloten für den approach. Bis dorthin ist es up to you, hä.
Um 20:53:42 UTC wurde CRX 3597 angewiesen, nach rechts auf den Steuerkurs 180°
zu drehen. Zwei Minuten später erfolgte von der Flugverkehrsleitstelle die folgende
Anweisung: „CRX 3597, on present heading intercept, follow ZUE VOR radial 125 inbound".
Der Copilot las diese Anweisung wie folgt zurück: „Present heading, intercept
inbound to ZUE, radial 152, CRX 3597“. Der Flugverkehrsleiter antwortete mit: „No, radial
125“. Der Copilot bestätigte: „125, CRX 3597“. Diese Anweisung erweckte bei der
Besatzung Erstaunen. Der Kommandant interpretierte die Anweisung „radial 125“
schliesslich als track 125. Eine Nachfrage beim Flugverkehrsleiter erfolgte nicht.
Um 20:57:18 UTC erfolgte die Freigabe für einen Sinkflug nach 6000 ft QNH. Der
Kommandant sagte daraufhin, dass er den QNH-Wert von 1024 hPa auf seinem primären
Höhenmesser eingestellt habe. Die Besatzung überprüfte im Rahmen des check for
approach die Anzeige der Höhenmesser durch einen Quervergleich. Der Copilot fügte
daraufhin an: „Fuel panel… set. Remaining, mer händ no Drüütuusig Zweihundert“. –
Fuel panel… set. Remaining, wir haben noch Dreitausend Zweihundert (Anmerkung:
3200 kg Treibstoff).
Um 20:58:50 UTC erhielt die Maschine die Freigabe für einen standard VOR/DME approach
28. Nachdem Zurich Arrival Flug CRX 3597 angewiesen hatte, die Fluggeschwindigkeit
auf 180 Knoten zu verringern, erfolgte um 21:03:01 UTC die Übergabe
an die Platzverkehrsleitstelle ADC 1 (Zurich Aerodrome Control 1, Zurich Tower). In
dieser Phase befand sich die HB-IXM in einem Sinkflug zwischen 5000 und 4000 ft
QNH und drehte nach rechts, um die Anflugstandlinie von 275° Richtung VOR/DME
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 19 von 152
KLO anzufliegen und dieser zu folgen. Die Position des Flugzeuges zur Zeit der Übergabe
an Zurich Tower war ca. 11 NM östlich des Flughafens. Während der Rechtskurve
erwähnte der Kommandant gegenüber dem Copiloten, dass er über Sicht auf den Boden
verfüge.
Um 21:03:29 UTC landete eine Embraer EMB 145 mit Flugnummer CRX 3891 auf Piste
28 und übermittelte um 21:04:31 UTC auf der Frequenz von Zurich Tower folgende Information:
„Ja, just for information, ähm..., the weather at... for runway 28 ist äh...
pretty minimum; so we had runway in sight about 2.2 NM distance away“. Diese Maschine
war die erste, die an diesem Abend den standard VOR/DME approach 28 durchgeführt
hatte. Diese Wetterinformation wurde von der ATC nicht an die nachfolgenden
Maschinen weitergeleitet. Wie die Aufzeichnungen des CVR um 21:05:59 UTC und
21:06:25 UTC belegen, nahm der Kommandant des Unfallfluges die Angaben von CRX
3891 wahr.
Um 21:04:23 UTC stellte der Copilot fest: „Jetzt simmer acht Meile denn, chömmer vier
tuusig verlaa.“ – Jetzt sind wir (auf) acht Meilen dann, (dann) können wir vier Tausend
verlassen.
Der Kommandant erwiderte darauf um 21:04:27 UTC: „Jawohl, guet, established simmer…
sächs tuusig ine bitte, go around altitude… vertical, sorry… vertical at tuusig“. –
Jawohl gut, established sind wir… sechs Tausend einstellen bitte, go around altitude…
vertical, sorry… vertical… Tausend. Den Befehl, eine go around altitude von 6000 Fuss
auf dem mode control panel zu setzen, bestätigte der Copilot mit „Jawohl“.
Um 21:04:36 UTC verliess die Maschine die Höhe von 4000 ft QNH. Ihre Geschwindigkeit
betrug zu diesem Zeitpunkt 160 kt und sie nahm zu Beginn eine Sinkrate von 1000
ft/min ein, welche später auf 1200 ft/min erhöht wurde. Diese Sinkrate wurde bis unmittelbar
vor der Kollision mit den Hindernissen nicht mehr verändert.
Um 21:05:21 UTC meldete sich die Flugbesatzung von CRX 3597 bei ADC 1: „Tower,
gueten Aabig, CRX 3597, established VOR/DME runway 28“. Zu diesem Zeitpunkt befand
sich das Flugzeug auf einer Höhe von 3240 ft QNH und in einer DME-Distanz von
6 NM vom VOR/DME KLO. Kurz darauf beendete die Besatzung den final check als Vorbereitung
für die Landung. Der Kommandant bemerkte um 21:05:27 UTC: „Sächs Meile
drüü drüü isch checked.“ – Sechs Meilen drei drei (3300)… ist checked.
Als die Maschine sich der Mindesthöhe für den Anflug (minimum descent alitude –
MDA) annäherte, erwähnte der Kommandant um 21:05:55 UTC, dass er dies erkannt
habe und erklärte, dass er über eine gewisse Sicht auf den Boden verfüge: „Zwei vier,
ground contact hämmer, hä“ – Zwei vier (2400), ground contact haben wir, hä“. Der
Copilot antwortete: „Jawohl“. Um 21:05:59 UTC stellte der Kommandant fest: „Mä hät
gseit, Pischte hät er spaht gseh da… approaching minimum descent altitude… da
hämmer ächli ground contact…“ – Man hat gesagt, Piste hat er spät gesehen hier…
approaching minimum descent altitude… hier haben wir etwas ground contact. Um
21:06:10 UTC erreichte das Flugzeug die MDA von 2390 ft QNH und der Kommandant
äusserte: „…zwo vier, s’Minimum… ground contact han ich… mer gönd wiiter im Moment…
es chunnt füre, ground contact hämer… mer gönd wiiter…“ - …zwei vier
(2400), das Minimum… ground contact habe ich… wir gehen weiter im Moment… es
kommt hervor, ground contact haben wir… wir gehen weiter… . Gleichzeitig sprach der
Copilot leise vor sich hin: „Zwei Vier“. Der Sinkflug wurde unverändert unter die MDA
fortgesetzt. Um 21:06:22 UTC ertönte die synthetische Stimme des ground proximity
warning systems (GPWS) mit dem Hinweis, dass gemäss Radarhöhenmessung 500
Fuss über Grund erreicht seien. Unmittelbar darauf stellte der Kommandant fest:
„*****, zwee Meile hät er gseit, gseht er d’Pischte“ – *****, zwei Meilen hat er gesagt,
sieht er die Piste. Um 21:06:31 UTC erwähnte der Kommandant, dass
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 20 von 152
2000 Fuss erreicht seien: „Zwöi Tuusig“. Eine Sekunde später wurde zudem mit synthetischer
Stimme die „minimums“-Meldung des GPWS gegeben, die durch die Messung
des Radarhöhenmessers bei 300 Fuss ausgelöst wurde. Um 21:06:32 UTC erteilte
der Platzverkehrsleiter ADC 1 dem Flug CRX 3597 die Landeerlaubnis. Während dieses
Funkspruches äusserte der Kommandant leise: „…go around mache?“ – …go around
machen? Um 21:06:34 UTC befahl der Kommandant einen Durchstart und es ertönte
ein akustisches Hinweissignal, welches das Ausschalten des Autopiloten anzeigte. Einige
Sekundenbruchteile später äusserte der Copilot in gleicher Weise die Absicht für einen
Durchstart. Die Aufzeichnungen des digital flight data recorders belegen, dass die
Besatzung die Leistungshebel in Richtung Startleistung nach vorne schob und die
Triebwerkdrehzahlen zunahmen. Eine Sekunde später begann der CVR die Geräusche
eines Aufpralls aufzunehmen. Kurze Zeit später brach die Aufzeichnung des CVR ab.
Die ersten Aufschlagspuren des Flugzeuges HB-IXM fanden sich in einer Höhe von
1854 ft AMSL in der Krone eines Baumes. Anschliessend schlug die HB-IXM ungefähr
200 m hangabwärts auf einer Höhe von 1690 ft AMSL auf. Noch während dieser letzten
Flugphase fing die Maschine Feuer.
Als der Platzverkehrsleiter die Landefreigabe erteilte, sah er die Maschine noch auf
dem bright display (Darstellung des Radarbildes auf einem Fernsehmonitor). Nachdem
er der CRX 3597 die Landefreigabe erteilt hatte, ohne darauf eine Bestätigung zu erhalten,
nahm er an, dass die Piloten in dieser Flugphase stark beschäftigt seien und
deshalb nicht sofort antworten konnten.
Nach dieser Funkübermittlung war der Platzverkehrsleiter mit einigen anderen Aufgaben
beschäftigt, bevor er sich wieder der CRX 3597 zuwenden konnte. Er stellte fest,
dass die Maschine nicht mehr auf dem bright display sichtbar war und begann deshalb,
zusammen mit dem Bodenverkehrsleiter, nach dem Verbleib der CRX 3597 zu suchen.
Er löste um 21:10:32 UTC, 4 Minuten nach Erteilen der Landefreigabe, die höchste
Alarmstufe aus.
Die ersten Fahrzeuge der Berufsfeuerwehr Flughafen Zürich trafen um 21:22 UTC zusammen
mit den medizinischen Rettungsdiensten am Unfallort ein.
1.2 Personenschäden
Verletzungen Besatzung Passagiere Drittpersonen
tödlich 3 21 ---
schwer 1 4 ---
leicht/nicht 1 3
1.3 Schaden am Luftfahrzeug
Der Aufprall und das folgende intensive Feuer zerstörten Cockpit, Rumpfvorderteil,
Rumpfmittelteil und grosse Teile der beiden Flügel. Einzig der abgerissene Rumpfhinterteil
mit Höhen- und Seitenleitwerk blieb vom Feuer verschont.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 21 von 152
1.4 Sachschaden Dritter
Es entstand grosser Waldschaden. Die Absturzstelle ist in der Zwischenzeit wieder renaturiert
worden.
1.5 Beteiligte Personen
1.5.1 Kommandant
Person +Schweizer Staatsbürger, Jahrgang 1944
Besatzungszeiten Dienstbeginn bei der Flugschule Horizon
Swiss Flight Academy am 23.11.01: 05:00
UTC
Dienstende bei der Fluggesellschaft Crossair
am 23.11.01: 20:31 UTC
Flugdienstzeit am 23.11.01: 15:31 h
Ruhezeit: 10:59 h
Dienstbeginn bei der Flugschule Horizon
Swiss Flight Academy am Unfalltag: 07:30
UTC
Flugdienstzeit im Unfallzeitpunkt: 13:37 h
Lizenz Führerausweis für Verkehrspiloten ATPL (A)
nach JAR, ausgestellt durch das Bundesamt
für Zivilluftfahrt, gültig bis 02.05.2006
Berechtigungen Radiotelefonie International RTI (VFR/IFR)
Nachtflug NIT (A)
Instrumentenflug IFR (A)
Zu verlängernde Berechtigungen Einmotorige Flugzeuge mit Kolbenmotorantrieb
SE piston
Reisemotorsegler TMG
Mehrmotorige Flugzeuge mit Kolbenmotorantrieb
ME piston
Musterberechtigung AVRO RJ/BAe 146 PIC
Musterberechtigung SAAB 340 PIC
Fluglehrer FI (A)
Instrumentenfluglehrer IRI (A)
Instrumentenflugberechtigungen SE piston, CAT I, gültig bis 11.02.2002
ME piston, CAT I, gültig bis 11.02.2002
AVRO RJ/BAe 146 PIC, CAT III, gültig bis
28.05.2002
SAAB 340 PIC, CAT II, gültig bis 11.02.2002
Nationale Berechtigungen Kunstflugerweiterung ACR (A)
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 22 von 152
Letzter proficiency check Semi annual recurrent check bei Crossair
am 24.10.2001
Letzter line check CDR type rating bei Crossair am 22.06.2001
Medizinisches Tauglichkeitszeugnis Letzte periodische Untersuchung am
10.08.2001
Beginn der Gültigkeit 11.08.2001, Klassen 1
und 2
Flugerfahrung 19555:29h gesamthaft
auf Motorflugzeugen
auf Segelflugzeugen
als Kommandant
auf dem Unfallmuster
während der letzten 90 Tage
davon auf dem Unfallmuster
am Vortag
davon auf dem Unfallmuster
am Unfalltag
davon auf dem Unfallmuster
19441:31
113:58
19341:08
287:13
193:14
163:06
8:47
6:19
4:57
2:51
h
h
h
h
h
h
h
h
h
h
Beginn der fliegerischen Ausbildung 1961
1.5.1.1 Berufsausbildung
Nach der Primarschule besuchte der Kommandant die Bezirksschule, die er nach zwei
Jahren abbrach. Anschliessend absolvierte er eine Lehre als Maschinenschlosser, die er
1964 erfolgreich abschloss.
1.5.1.2 Fliegerische Ausbildung und Tätigkeit
Im Alter von 17 Jahren bewarb sich der Kommandant für die Fliegerische Vorschulung
(FVS). Die erste Aufnahmeprüfung bestand er nicht. Ein Antrag auf erneute Zulassung
zu den Aufnahmeprüfungen 1963 und zwei Anträge 1965 wurden vom Fliegerärztlichen
Institut der Luftwaffe mit Hinweis auf mangelnde schulische Leistungen abgelehnt.
Während der Berufsausbildung begann der Kommandant auf privater Basis die Ausbildung
im Segelflug und auf einmotorigen Flugzeugen. Der Führerausweis für Segelflugzeuge
wurde vom Eidgenössischen Luftamt am 17. August 1963 erteilt, derjenige für
Privatpiloten am 19. Februar 1964. Anschliessend nahm der Kommandant an einem
Theoriekurs für die Instrumentenflugberechtigung und die Berufspilotenlizenz teil. Nach
der entsprechenden Ausbildung erwarb er am 12. April 1966 die Erweiterung für Kunstflug
und am 16. August 1966 den Führerausweis für Berufspiloten.
Im Frühjahr 1966 bestand der Kommandant die Eignungsprüfungen für Motorfluglehrer.
Nach dem entsprechenden Kurs und einem rund halbjährigen Fluglehrerpraktikum
wurde ihm am 31. Januar 1967 die Berechtigung erteilt, Privatpiloten auszubilden.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 23 von 152
Zwischen 1967 und 1970 war der Kommandant intensiv als VFR-Fluglehrer für Privatpiloten
tätig und erhöhte in dieser Zeit seine Flugerfahrung im Sichtflug von rund 200
auf über 2000 Flugstunden.
Von 1965 bis 1970 schulte er erfolgreich auf sechs weitere Flugzeugmuster um, wobei
fünf dieser Baumuster mehrheitlich im Sichtflug benutzt wurden.
Die Ausbildung im Instrumentenflug begann 1966, die Sonderbewilligung für Instrumentenflug
konnte allerdings erst am 10. Juli 1969 erteilt werden, weil die theoretischen
Ergänzungsprüfungen und die praktische Prüfung zwischen 1967 und 1969
mehrfach nicht bestanden wurden. Die Experten des Eidgenössischen Luftamtes bemängelten
insbesondere eine ungenügende Übersicht und den falschen Einsatz der
Navigationsanlagen. Die Prüfung zum Erwerb der Sonderbewilligung für Instrumentenflug
wurde mit der Note „average“ bestanden.
Von diesem Zeitpunkt bis 1979 führte der Kommandant regelmässig mit den Baumustern
Cessna 337 und Cessna 414 Bedarfsflüge für verschiedene Flugbetriebsunternehmen
durch. Im Herbst 1972 wurde der Kommandant zu einem Kurs für IFRFluglehrer
des Eidgenössischen Luftamtes zugelassen und bildete in der Folge bis zum
Unfallzeitpunkt ausserhalb der Fluggesellschaft Crossair regelmässig Schüler im Instrumentenflug
aus.
Die periodischen Kontrollen im Instrumentenflug zwischen 1969 und 1979 wurden im
Allgemeinen mit der Note „average“ bestanden. Die jeweiligen Experten bemängelten
gelegentlich, dass Checklisten nicht konsequent angewendet, Verfahren nicht eingehalten
und die Navigationsgeräte nicht zweckmässig eingesetzt wurden. Diese Feststellungen
betrafen auch die Arbeit als Fluglehrer.
Am 28. Januar 1979 bewarb sich der Kommandant bei der Crossair als Pilot. Unterlagen
über eine Eignungsabklärung sind nicht vorhanden. Im Frühjahr 1979 nahm der
Kommandant bei Flight Safety International an einem Umschulungskurs auf das von
der Crossair damals eingesetzte Flugzeugmuster SA 226 TC Metroliner II teil. Am
5. April 1979 bestand er mit einer Gesamtflugerfahrung von 4490 Flugstunden die Prüfung
für die Musterberechtigung mit der Note „below average - average“.
Vom 15. Juni 1979 bis 31. August 1979 war der Kommandant als nebenamtlicher Pilot
tätig und zwischen dem 1. September 1979 und 31. Mai 1982 war er vollzeitlich bei der
Crossair angestellt. Im Frühjahr 1981 schulte der Kommandant vom Flugzeugmuster
SA 226 TC Metroliner II auf die SA 227 AC Metroliner III um. Auf diesen beiden Flugzeugtypen
wurde er als Kommandant, Fluglehrer, route check pilot und Experte eingesetzt.
Zugleich war er stellvertretender Chefpilot der Firma. Im selben Zeitraum war er
als Fluglehrer und Pilot noch in den flight operations manual (FOM) von drei weiteren
Flugunternehmen eingetragen. Auf eigenen Wunsch verliess er die Crossair am 31. Mai
1982. Die fliegerischen Leistungen des Kommandanten wurden von der Crossair als
überdurchschnittlich beurteilt.
Vom 1. Juni 1982 bis zum 31. Mai 1991 arbeitete der Kommandant unter sieben verschiedenen
Freelance-Verträgen für die Crossair. Am 12. August 1987 erhielt der
Kommandant die Musterberechtigung für die Saab 340. Vom 1. Juni 1991 bis 31. Dezember
1993 war er in einem Teilzeitarbeitsverhältnis zu 83 % durch das Flugbetriebsunternehmen
beschäftigt. Ab 1. Januar 1994 bis zum Unfallzeitpunkt arbeitete der
Kommandant wieder zu 100 % für die Crossair. Seit dem 11. September 1981 bestand
zudem ein Teilzeitanstellungsvertrag mit der Flugschule Horizon Swiss Flight Academy
für die Tätigkeit als Fluglehrer.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 24 von 152
1.5.1.2.1 Erster Umschulungskurs auf das Flugzeugmuster MD 80
In den Jahren 1993 und 1994 stand der Kommandant drei Mal für eine Umschulung
auf das Flugzeugmuster British Aerospace 146 „Jumbolino“ zur Diskussion. Aus verschiedenen
Gründen kamen diese Umschulungen nicht zu Stande und der Kommandant
wurde weiterhin auf der Saab 340 eingesetzt.
Im Laufe des Jahres 1995 wurde der Kommandant für die Umschulung auf das Flugzeugmuster
MD 80 bestimmt. Ein Auswahlverfahren oder eine Eignungsüberprüfung
fanden nicht statt. Der Umschulungskurs begann am 2. Januar 1996. Kurz nach der
Aufnahme des Simulatortrainings zeigte der Kommandant erstmals Mühe, die geforderten
Leistungen zu erbringen, und es wurden ihm zwei zusätzliche Simulatorlektionen
angeboten. Auch nach diesen Trainingseinheiten bestanden weiterhin Lücken bezüglich
der Übersicht und dem Koordinationsvermögen. Weil die Lernfortschritte zu gering waren,
beschloss man, den Umschulungskurs abzubrechen und nach einigen Monaten
dem Kommandanten einen weiteren Versuch zu ermöglichen, auf das Flugzeugmuster
MD 80 umzuschulen.
Eine weitergehende Auseinandersetzung mit den Gründen für das Versagen im Umschulungskurs
fand nicht statt. Der Kommandant wurde in der Folge wieder auf das
Flugzeugmuster Saab 340 rückgeschult und im Linienverkehr eingesetzt.
1.5.1.2.2 Zweiter Umschulungskurs auf das Flugzeugmuster MD 80
Am 24. Juni 1996 konnte der Kommandant einen zweiten Umschulungskurs auf die
MD 80 beginnen. Vor diesem Kurs fand keine Eignungsabklärung statt. In der zweiten
Simulatorlektion zeigte sich, dass der Kommandant grosse Probleme mit dem digital
flight guidance system (DFGS) der MD 80 hatte, was seine Gesamtleistung stark beeinträchtigte.
Als sich nach der vierten Lektion die Schwierigkeiten noch vergrösserten,
wurde eine zusätzliche Simulatorübung durchgeführt. Nach der folgenden regulären
Simulatorlektion und nach dem achten Training wurde nochmals je eine Zusatzübung
eingeplant.
Am 15. August 1996 bestand der Kommandant den type rating check am Ende des
Umschulungskurses nicht. Die Unzulänglichkeiten betrafen unter anderem die manuelle
Steuerung des Flugzeuges, eine mangelhafte Systematik in Bezug auf den Einsatz des
Flugführungssystems und es wurde eine eingeschränkte Fähigkeit zur Analyse bzw.
zeitgerechten Entscheidungsfindung festgestellt.
Daraufhin wurde der Kommandant ein weiteres Mal auf die Saab 340 rückgeschult und
ab 1. September 1996 wieder im Liniendienst eingesetzt. Eine Leistungsüberprüfung
oder eine vertiefte Auseinandersetzung mit den Gründen für das erneute Versagen im
Umschulungskurs fanden nicht statt.
1.5.1.2.3 Umschulungskurs auf das Flugzeugmuster Avro RJ 85/100
Bereits in den Jahren 1993 und 1994 stand der Kommandant für eine Umschulung auf
das Flugzeugmuster Avro RJ 85/100 zur Diskussion. Diese Umschulung kam aus unterschiedlichen
Gründen nicht zu Stande. Nach den erfolglosen Versuchen, auf die MD 80
umzuschulen, wurde der Kommandant weiterhin auf der Saab 340 eingesetzt. Im Laufe
des Jahres 2000 wurde die Ausserbetriebsetzung der Saab 340 absehbar und Crossair
bemühte sich, ein anderes Flugzeugmuster für den weiteren Einsatz des Kommandanten
zu finden. Der Kommandant, der zum Ausdruck brachte, dass er gerne bis zum Alter
von 65 Jahren fliegen möchte, bewarb sich nochmals für den MD 80. Da auf dem
Flugzeugmuster MD 80 zu diesem Zeitpunkt kein Bedarf herrschte, kam eine Umschulung
nicht in Frage. Es wurde entschieden, den Kommandanten auf die Avro RJ 85/100
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 25 von 152
umzuschulen. Als Begründung für diesen Entscheid wurde von den Verantwortlichen
des Flugbetriebsunternehmens die relative Einfachheit dieses Flugzeugmusters genannt.
Vor der Umschulung auf das Flugzeugmuster Avro RJ 85/100 wurde der Kommandant
keiner Eignungsabklärung unterzogen. Der Cheffluglehrer für die Avro RJ 85/100 gab
an, nicht gewusst zu haben, dass der Kommandant bereits zwei erfolglose Umschulungsversuche
auf ein anderes Flugzeugmuster mit Strahlantrieb hinter sich hatte.
Am 6. Mai 2001 begann der Kommandant mit der Umschulung auf das Flugzeugmuster
Avro RJ 85/100. Am 28. Mai 2001 wurde ein erster Teil des proficiency checks durchgeführt.
Aufgrund einer Simulatorpanne musste der Rest des checks am 4. Juni 2001
auf einem anderen Simulator beendet werden. Anschliessend begann die Streckeneinführung
unter Aufsicht, die am 22. Juni 2001 nach 20 Sektoren mit einem line check
beendet wurde. Am 24. Oktober 2001 legte der Kommandant den letzten semi annual
recurrent check als proficiency check ab. Auf den entsprechenden Checkformularen
sind ausschliesslich positive Bemerkungen der Experten zur Arbeit des Kommandanten
vorhanden. Sowohl während der proficiency und line checks als auch während der
Streckeneinführung unter Aufsicht sind keinerlei Fehler verzeichnet und es wurden
auch keine Punkte erwähnt, die der Kommandant noch hätte verbessern können.
Während des Einsatzes auf dem Flugzeugmuster Avro RJ 85/100 wurden im cockpit
procedure mockup (CPM), im Simulatortraining (SIM) und bei den folgenden checks die
nachstehenden Übungen im Zusammenhang mit non precision approaches durchgeführt.
Datum Training Anzahl und Art der Anflüge
26.04.2001 CPM Lektion 5 2 non precision approaches
04.05.2001 CPM Lektion 8 1 non precision approach
12.05.2001 SIM Lektion 1 1 VOR approach Zürich
13.05.2001 SIM Lektion 2 1 VOR approach Genf
14.05.2001 SIM Lektion 3 2 NDB approach Stuttgart
20.05.2001 SIM Lektion 5 1 LOC/DME circling approach
1 VOR approach Milano-Linate
25.05.2001 SIM Lektion 9 2 NDB approaches Basel
28.05.2001 proficiency check 1 VOR approach Zürich
10.07.2001 CDR type rating line check 1 standard VOR/DME approach 28 Zürich
29.10.2001 Semi annual reccurent check 1 LOC/DME approach Zürich
Während der Streckenausbildung unter Überwachung ergaben sich keine non precision
approaches. Im Laufe der Ausbildung auf dem Flugzeugmuster Avro RJ 85/100 führte
der Kommandant somit 14 non precision approaches als pilot flying durch. Darunter
befanden sich je ein standard VOR/DME approach 28 in Zürich im Simulator und ein
Anflug im Flugzeug.
1.5.1.3 Tätigkeit als Fluglehrer
Der Kommandant war während über 20 Jahren bei der Horizon Swiss Flight Academy
als Fluglehrer tätig. Er wurde hauptsächlich als Instruktor für angehende Berufspiloten
mit Instrumentenflugberechtigung eingesetzt. Auf seinen Wunsch hin führte er fast
ausschliesslich Ausbildungsteile auf dem Flugzeug durch und gelangte kaum im Simulator
zum Einsatz.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 26 von 152
Am 22. September 1992 wurde der Kommandant vom Bundesamt für Zivilluftfahrt zum
Experten für die Abnahme von Flugprüfungen zur Erlangung der Instrumentenflugberechtigung
ernannt. Vier Jahre später, am 13. August 1996, erhielt der Kommandant
zusätzlich die Berechtigung, Flugprüfungen nach Sichtflugregeln abzunehmen.
In den Jahren 1990 bis 1993 war er als Instruktor in Kursen des BAZL zur Ausbildung
von Instrumentenfluglehrern eingesetzt.
Im Herbst 1998 nahm der Kommandant als Wiederholung während zweier Wochen am
VFR-Motorfluglehrerkurs des BAZL teil, um seine Lehrberechtigung für Sichtflug wieder
zu erlangen, die seit dem 15. Dezember 1986 erloschen war.
Seit der Einführung von JAR-FCL 1 zwischen 1999 und 2002 müssen Fluglehrer für die
Erneuerung gewisser Berechtigungen periodisch einen proficiency check bestehen. So
musste jeder Fluglehrer der Horizon Swiss Flight Academy einen proficiency check für
mehrmotorige Flugzeuge mit Kolbenmotorantrieb auf dem schuleigenen Simulator ablegen.
Da der Kommandant laut mehreren Aussagen Vorbehalte gegen Simulatoren
hatte, wurde dieser proficiency check stattdessen auf dem Flugzeug durchgeführt.
Am 28. April 2000 führte der Kommandant als Fluglehrer mit dem Copiloten des Unfallfluges
zwei Ausbildungsflüge durch. Der Copilot war zu dieser Zeit daran, seine Berufspilotenlizenz
mit Instrumentenflugberechtigung zu erwerben.
Wie aus den Aufzeichnungen der Flugtätigkeit hervorgeht, führte der Kommandant gelegentlich
am Morgen Schulungsflüge durch und flog anschliessend am selben Tag
mehrere Sektoren als Verkehrspilot. Am 13. November 2001 beispielsweise führte der
Kommandant zwischen 06:00 UTC und 13:00 UTC vier Flüge mit zwei Flugschülern
durch. Anschliessend flog er zwei Sektoren bei Crossair und beendete seinen Dienst
nach 13 Stunden und 34 Minuten. Weder das Flugbetriebsunternehmen Crossair noch
die Flugschule Horizon Swiss Flight Academy führten eine unternehmensübergreifende
Flugdienst- und Ruhezeitenkontrolle.
1.5.1.4 Besondere Vorkommnisse während der Berufslaufbahn
1.5.1.4.1 Allgemeines
Wie die Untersuchung ergab, ereigneten sich in der Berufslaufbahn des Kommandanten
zwischen 1967 und dem Unfallzeitpunkt verschiedene Vorfälle. Im Folgenden wird
nur auf die wichtigsten Ereignisse eingegangen, die sich während der Tätigkeit beim
Flugbetriebsunternehmen Crossair zutrugen und teilweise erst nach dem Unfall bekannt
wurden.
1.5.1.4.2 Unbeabsichtigtes Einfahren des Fahrwerks am Boden
Am 21. Februar 1990 führte der Kommandant als Instruktor auf dem Flugzeugmuster
Saab 340 mit einem Copiloten ein Systemtraining an Bord des Flugzeuges HB-AHA
durch. Dabei kam das Gespräch auf das Verfahren zum Beheben einer Fahrwerkeinziehstörung.
Der Kommandant war der Meinung, dass am Boden bei belastetem Fahrwerk
die Funktion des Einziehmechanismus unterbrochen sei, wie dies beispielsweise
bei kleineren Flugzeugen der Fall ist. Tatsächlich verhinderte die entsprechende Sicherung
der Saab 340 aber nur die Betätigung des Fahrwerkhebels. Der Kommandant betätigte
den down lock release button, der die Sicherung übersteuerte, und der Copilot
stellte den Fahrwerkhebel in die Einfahrposition. Entgegen der Annahme des Kommandanten
begannen die Hydraulikpumpen zu arbeiten und der Einziehvorgang konnte
nicht mehr unterbrochen werden. Das Flugzeug schlug auf dem Boden auf und erlitt
Totalschaden. Der Kommandant trug eine Kopfverletzung davon, während die übrigen
Personen, die sich im und um das Flugzeug befunden hatten, unverletzt blieben.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 27 von 152
Der Vorfall wurde durch das Flugbetriebsunternehmen untersucht und der Kommandant
in der Folge nicht mehr als Instruktor eingesetzt. Dieses Ereignis hatte für die
Laufbahn des Kommandanten keine weiteren Auswirkungen.
1.5.1.4.3 Abbruch eines Route Checks
Am 25. Juni 1991 absolvierte der Kommandant einen route check, bei dem er eine Geschwindigkeitsvorgabe
der Flugverkehrsleitung während mehrerer Minuten nicht beachtete.
Dies führte dazu, dass die Maschine während des Endanfluges in die Nachlaufwirbel
(wake turbulence) einer Boeing 747 einflog. Der check for approach und der
final check wurden vergessen und die cabin attendant stand bei der Landung noch im
Gang der Passagierkabine. Der Experte beurteilte die Übersicht des Kommandanten als
ungenügend und brach den route check ab, der in der Folge wiederholt werden musste.
1.5.1.4.4 Einstellung der Tätigkeit als Trainingscaptain
Ende 1991 wurde der Kommandant von der Tätigkeit als Trainingscaptain entbunden,
weil seine Leistungen nicht genügten.
1.5.1.4.5 Instrumentenanflug in Lugano bei Nacht
Laut der Aussage des beteiligten Copiloten führte der Kommandant im Dezember 1995
als fliegender Pilot bei Nacht und unter Instrumentenflugbedingungen einen Anflug auf
den Flugplatz Lugano durch. Kurz bevor die Saab 340 den Navigationspunkt PINIK auf
einer Höhe von 7000 ft QNH erreichte, wurde die Maschine für die Landung konfiguriert,
d.h. das Fahrwerk wurde ausgefahren und eine Landeklappenstellung von 35°
gewählt. Für den Sinkflug verwendete der Kommandant den vertical speed mode des
Autopiloten und stellte eine Sinkrate von 4000 ft/min ein. Da üblicherweise für diesen
Anflug Sinkraten von weniger als 2000 ft/min verwendet wurden, fragte der Copilot
nach dem Grund für den erhöhten Sinkwert. Der Kommandant erklärte, dass man das
Verfahren auf diese Weise durchführen könne. Während des Sinkfluges, der unverändert
bis auf eine Radarhöhe von 300 ft RA über dem See weitergeführt wurde, nahm
die Geschwindigkeit des Flugzeuges von 135 auf mehr als 200 KIAS zu. Als die Maschine
auf 300 ft RA in den Horizontalflug übergegangen war, konnte ein Teil des Ufers
und der Berghänge erkannt werden. Auf dieser Höhe wurde nun in Richtung Flugplatz
Lugano geflogen, bis die Piste schliesslich in Sicht kam und gelandet werden konnte.
Die overspeed warning und das ground proximity warning system (GPWS) waren vor
dem Sinkflug deaktiviert worden.
Der Vorfall wurde erst nach dem Unfall bekannt. Rekonstruktionsflüge im Simulator ergaben,
dass der Anflug in der geschilderten Weise durchführbar ist.
1.5.1.4.6 Navigationsfehler während eines privaten Rundfluges
Das Flugbetriebsunternehmen Crossair bot seinen Mitarbeitern die Möglichkeit, Verkehrsflugzeuge
für private Flüge zu mieten. Im operations manual war die Durchführung
solcher Rundflüge, die mehrheitlich nach Sichtflugregeln durchgeführt wurden,
geregelt. Grundsätzlich wurden die gleichen Standards wie bei Linienflügen angewandt.
Der Kommandant führte mehrfach Alpenrundflüge mit einer gemieteten Saab 340
durch, wobei die Fluggäste jeweils von der Besatzung angeworben wurden.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 28 von 152
Am 21. März 1999 unternahm der Kommandant zusammen mit einem Copiloten und
einer cabin attendant einen privaten Flug mit 30 Passagieren an Bord der Saab 340
HB-AKI. Geplant war ein Alpenrundflug von Zürich aus mit einer Zwischenlandung in
Sion und anschliessendem Rückflug nach Zürich.
In Zürich lag eine annähernd geschlossene Wolkendecke vor, während im Alpenraum
gute Wetterverhältnisse herrschten.
Auf dem Hinflug mit Crossair Flugnummer CRX 4718 nach Sion war der Kommandant
als fliegender Pilot eingesetzt. Der Abflug von Zürich erfolgte nach Instrumentenflugregeln.
Über den Wolken wurde der Flug nach Sichtflugregeln Richtung Berner Alpen
fortgesetzt.
Zeugenaussagen und ein Filmdokument belegen, dass der Kommandant ausgedehnte
Erklärungen des Flugweges abgab und dass die Passagiere das Cockpit besuchen durften.
Als sich die Maschine auf einer Höhe von ungefähr 12 000 ft QNH über den Savoyer
Alpen befand, nahm der Copilot Funkkontakt mit der Platzverkehrsleitstelle Sion auf.
Kurze Zeit später realisierte der Kommandant, dass die geplante Flugzeit nach Sion annähernd
abgelaufen war. Er leitete unverzüglich einen Sinkflug in Richtung eines Flugplatzes
ein, der sich in Sichtweite befand. Dabei handelte es sich um den Flugplatz
Aosta (I), der sich ungefähr 50 km südlich von Sion in einem Tal befindet, welches auf
der anderen Seite des Alpenhauptkamms verläuft. Eine Anflugbesprechung fand nicht
statt und die wichtigsten Checklistenpunkte wurden intuitiv und in freier Abfolge erledigt.
Der Copilot versuchte mehrfach, wieder mit der Platzverkehrsleitstelle Sion in
Kontakt zu treten, was ihm aufgrund der topografischen Gegebenheiten nicht gelang.
Auf Interventionen des Copiloten reagierte der Kommandant nicht. Es wurden mehrere
Sinkflugkurven über dem Flugplatz Aosta durchgeführt und der Anflug ohne Funkkontakt
fortgesetzt. Als sich die Maschine im Endanflug befand, konnten die Passagiere auf
Strassenschildern lesen, dass sie sich in Italien befanden. Nun leitete der Kommandant
einen Durchstart ein und flog über den Grossen St. Bernhard ins Rhonetal, wo die Landung
in Sion erfolgte.
Der Navigationsfehler wurde den Passagieren erklärt. Die Fluggesellschaft wurde über
den Vorfall nicht informiert und erfuhr erst nach dem Unfall davon. Es gibt keine Hinweise,
dass die Besatzung gesundheitlich beeinträchtigt gewesen ist.
1.5.1.5 Arbeits- und Führungsverhalten
Einige der befragten Copiloten sagten aus, dass der Kommandant als fliegender Pilot
das Flugzeug gelegentlich alleine (one man operation) bediente und die Copiloten nicht
immer konsequent in Bedienungs- und Entscheidungsvorgänge integrierte. Ebenso ist
belegt, dass er vor allem auf dem letzten Flugabschnitt eines Einsatztages Wert darauf
legte, pünktlich landen zu können.
Aus den Unterlagen der Umschulungskurse sowie aus Zeugenaussagen ist zu entnehmen,
dass der Kommandant eine gewisse Abwehrhaltung gegenüber komplexeren
technischen Systemen aufwies und häufig Mühe mit deren Bedienung zeigte.
Das Verhalten des Kommandanten wurde übereinstimmend als sehr ruhig und tendenziell
distanziert beschrieben. Copiloten stellten gelegentlich ein spürbares Autoritätsgefälle
bei der Zusammenarbeit fest, das sie überwiegend dem grossen Erfahrungsvorsprung
des Kommandanten zuschrieben.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 29 von 152
1.5.2 Copilot
Person +Schweizer Staatsbürger, Jahrgang 1976
Besatzungszeiten Dienstbeginn am 23.11.01: 11:50 UTC
Dienstende am 23.11.01: 22:05 UTC
Flugdienstzeit am 23.11.01: 10:15 h
Ruhezeit: 18:49 h
Dienstbeginn am Unfalltag: 16:20 UTC
Flugdienstzeit im Unfallzeitpunkt: 4:47 h
Lizenz Führerausweis für Berufspiloten CPL (A)
nach JAR, ausgestellt durch das Bundesamt
für Zivilluftfahrt, gültig bis 06.07.2005
Berechtigungen Radiotelefonie International RTI (VFR/IFR)
Nachtflug NIT (A)
Instrumentenflug IFR (A)
Zu verlängernde Berechtigungen Einmotorige Flugzeuge mit Kolbenmotorantrieb
SE piston
Mehrmotorige Flugzeuge mit Kolbenmotorantrieb
ME piston
Musterberechtigung AVRO RJ/BAe 146
COPI
Instrumentenflugberechtigungen SE piston, CAT I, gültig bis 12.05.2002
ME piston, CAT I, gültig bis 12.05.2002
AVRO RJ/Bae 146 COPI, CAT III, gültig bis
31.03.2002
Letzter proficiency check Semi annual recurrent check bei Crossair
am 02.07.2001
Letzter line check F/O first line check bei Crossair am
12.05.2001
Medizinisches Tauglichkeitszeugnis Letzte periodische Untersuchung am
18.12.2000
Beginn der Gültigkeit 20.01.2001, Klassen
1 und 2
Flugerfahrung 490:06 h gesamthaft
auf Motorflugzeugen
als Kommandant
auf dem Unfallmuster
während der letzten 90 Tage
am Vortag
am Unfalltag
490:06
81:55
348:20
120:22
5:49
2:51
h
h
h
h
h
h
Beginn der fliegerischen Ausbildung 1999
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 30 von 152
1.5.2.1 Berufsausbildung
Nach der Primar- und Sekundarschule besuchte der Copilot die Kantonsschule und
schloss diese 1997 mit der Matura mathematisch-naturwissenschaftlicher Richtung ab.
Im Herbst 1998 begann er ein Studium an einem Technikum, das er nach einem halben
Jahr zu Gunsten der fliegerischen Ausbildung abbrach.
1.5.2.2 Fliegerische Ausbildung
Im Januar 1999 begann der Copilot mit der Ausbildung zum Verkehrspiloten bei der
Flugschule Horizon Swiss Flight Academy und bestand am 27. August 1999 die Flugprüfung
für Privatpiloten. Im Rahmen eines integrierten Kurses nach dem Reglement
für die Ausweise von Flugpersonal (RFP) des Bundesamtes für Zivilluftfahrt legte er am
10. Juni 1999 und am 9. September 1999 die Theorieprüfung für Berufspiloten bzw. für
die Instrumentenflugberechtigung ab. Am 2. Mai 2000 folgte die Theorieprüfung für
Verkehrspiloten. Die Flugprüfung zur Erlangung der Berufspilotenlizenz legte der Copilot
am 12. Mai 2000 zusammen mit der praktischen Prüfung für die Instrumentenflugberechtigung
ab.
Die Ausbildungsunterlagen und Aussagen von Mitschülern belegen, dass der Copilot
bezüglich non precision approaches nach den Vorgaben von JAR-OPS 1 instruiert wurde.
Insbesondere kann davon ausgegangen werden, dass ihm die Sichtreferenzen bekannt
waren, die notwendig sind, um die Mindesthöhe für den Anflug (minimum descent
alitude – MDA) unterschreiten zu können.
1.5.2.3 Auswahl des Copiloten durch das Flugbetriebsunternehmen Crossair
Am 9. Juli 2000 bewarb sich der Copilot beim Flugbetriebsunternehmen Crossair als
Copilot. Die ersten Abklärungen in Form von Einzel- und Gruppenassessments fanden
am 1. September 2000 statt. Die Beobachtungen der vier recruitment officer, welche
mit diesen Tests betraut waren, sind teilweise unterschiedlich. Gemeinsam stellten die
vier Assessoren aber fest, dass der Copilot die Tendenz besass, sich unterzuordnen.
Anlässlich des Simulatorchecks am 21. September 2000, der im Rahmen des Auswahlverfahrens
durchgeführt wurde, stellte man kleinere fliegerische Probleme beim Lagefliegen
fest, die man für korrigierbar hielt. Der recruitment officer, welcher sowohl den
Simulatorcheck leitete als auch ein erstes Interview führte, beschrieb die Persönlichkeit
des Copiloten sehr positiv. Insbesondere attestierte er ihm eine hohe Motivation und
beurteilte ihn als zum Unternehmen passend.
Das psychodiagnostische Gutachten eines externen test- and assessment centers beschreibt
den Copiloten unter anderem als vital, aber nicht kämpferisch, empfindsam,
wohlwollend und nach Harmonie strebend. Im Bereich des Selbstvertrauens und der
persönlichen Reife wurde Entwicklungsbedarf festgestellt.
Die Resultate aller Abklärungen wurden anschliessend an den Auswahlausschuss (selection
board) weitergeleitet. Das selection board meeting fand am 26. November 2000
statt. Es bestand aus einem Mitglied der Geschäftsleitung und einer Fachperson des
Bereiches pilots’ recruitment. Der Copilot wurde positiv beurteilt und eingestellt. Man
verordnete ihm fünf zusätzliche Trainingseinheiten im Simulator, um schwerpunktmässig
das Lagefliegen zu üben. Nach dem Unfall gaben die Mitglieder des selection
boards an, dass der Copilot gemäss dem von Crossair verwendeten Auswahlprofil für
angehende Piloten als gut qualifiziert gegolten habe.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 31 von 152
1.5.2.4 Umschulungskurs auf das Flugzeugmuster Avro RJ 85/100
Am 8. Januar 2001 begann der Copilot einen Kurs für angehende Copiloten, der unter
anderem eine zweiwöchige Einführung in das Flugbetriebsunternehmen umfasste. Im
Rahmen dieser company introduction wurde auch eine theoretische Einführung in die
wirksame Art der Zusammenarbeit einer Besatzung (crew resource management –
CRM) vermittelt.
Am 31. März 2001 absolvierte der Copilot die Fähigkeitsprüfung (skill test) im Simulator
und wurde nach dem Flugtraining am 7. April 2001 für die Streckeneinführung unter
Überwachung freigegeben. Nach Abschluss von 40 Sektoren legte er am 12. Mai 2001
den line check ab. Am 2. Juli 2001 bestand er den letzten semi annual recurrent check.
Auf den entsprechenden Checkformularen sind fast ausschliesslich positive Bemerkungen
der Experten zur Arbeit des Copiloten vorhanden.
Während des Einsatzes auf dem Flugzeugmuster Avro RJ 85/100 wurden im cockpit
procedure mockup (CPM), im Simulatortraining (SIM) und bei den folgenden checks die
nachstehenden Übungen im Zusammenhang mit non precision approaches durchgeführt.
Datum Training Anzahl und Art der Anflüge
02.03.2001 CPM Lektion 5 2 non precision approaches
10.03.2001 CPM Lektion 8 1 LOC approach 16 Zürich
19.03.2001 SIM Lektion 2 1 VOR approach Genf
22.03.2001 SIM Lektion 3 1 LOC approach Stuttgart
29.03.2001 SIM Lektion 8 1 VOR approach Basel
30.03.2001 SIM Lektion 8a 1 VOR approach 23 Genf
31.03.2001 proficiency check 1 VOR approach 16 Zürich
02.07.2001 semi annual check 1 NDB approach 25 Stuttgart
Da sich während der Streckenausbildung unter Überwachung keine weiteren non precision
approaches ergaben, führte der Copilot während der Umschulung auf das Flugzeugmuster
Avro RJ 85/100 somit 9 non precision approaches durch. Nachweisbar war
er dabei während eines Anfluges auf Piste 28 des Flughafens Zürich als pilot not flying
eingesetzt.
1.5.2.5 Besondere Vorkommnisse während der Berufslaufbahn
Es sind keine besonderen Vorkommnisse aus der beruflichen Laufbahn bekannt.
1.5.3 Flugbegleiter A
Funktion Senior cabin attendant SCA-CA 1
Person +Schweizer Staatsbürger, Jahrgang 1974
Ausweise Periodischer Kurs über Notverfahren (emergency
procedure refresher) ausgestellt
durch die Crossair, gültig bis 30. April 2002.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 32 von 152
1.5.4 Flugbegleiter B
Funktion Cabin attendant CA 2
Person Schweizer Staatsbürger, Jahrgang 1976
Ausweise Periodischer Kurs über Notverfahren (emergency
procedure refresher) ausgestellt
durch die Crossair, gültig bis 31. August
2002.
1.5.5 Flugbegleiter C
Funktion Cabin attendant CA 3
Person Schweizer Staatsbürger, Jahrgang 1973
Ausweise Periodischer Kurs über Notverfahren (emergency
procedure refresher) ausgestellt
durch die Crossair, gültig bis 31. Dezember
2001.
1.5.6 Flugverkehrsleiter A
Funktion Anflugverkehrsleiter (APE) bis 21:04 UTC
Platzverkehrsleiter (ADC 1) ab 21:06 UTC
Person Dänischer Staatsbürger, Jahrgang 1961
Ausbildung Der Flugverkehrsleiter trat am 13. März
2000 bei swisscontrol ein. Er war zu der Zeit
im Besitze einer Flugverkehrsleiter-Lizenz,
welche er in Dänemark erworben hatte. Der
Flugverkehrsleiter durchlief eine Umschulung,
welche auf die lokalen Bedürfnisse zugeschnitten
war und absolvierte anschliessend
das notwendige on the job training
(OJT). Nach Abschluss dieser Umschulung
stellte ihm das Bundesamt für Zivilluftfahrt
auf Antrag von skyguide eine schweizerische
Lizenz aus.
Lizenz für Flugverkehrsleiter, ausgestellt durch das
Bundesamt für Zivilluftfahrt am 3. Oktober
2000, letzte Erneuerung am 22. August
2001, gültig bis 7. August 2002.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 33 von 152
1.5.7 Flugverkehrsleiter B
Funktion Anflugverkehrsleiter (APW) bis 21:04 UTC
Anflugverkehrsleiter (APW+APE) ab 21:04
UTC
Person Schweizer Staatsbürger, Jahrgang 1974
Lizenz für Flugverkehrsleiter, ausgestellt durch das
Bundesamt für Zivilluftfahrt am 15. November
1996, letzte Erneuerung am 5. März
2001, gültig bis 13. Februar 2002.
1.5.8 Flugverkehrsleiter C
Funktion Platzverkehrsleiter (ADC 1) bis 21:06 UTC
Person Schweizer Staatsbürger, Jahrgang 1949
Lizenz für Flugverkehrsleiter, ausgestellt durch das
Bundesamt für Zivilluftfahrt am 29. Juni
1972, letzte Erneuerung am 29. Juni 2001,
gültig bis 29. Juni 2002.
1.5.9 Flugverkehrsleiter D
Funktionen Bodenverkehrsleiter (GRO) bis 21:03 UTC
Bodenverkehrsleiter (GRO) und Dienstleiter
Kontrollturm (DL) ab 21:03 UTC
Person Schweizer Staatsbürger, Jahrgang 1972
Lizenz für Flugverkehrsleiter, ausgestellt durch das
Bundesamt für Zivilluftfahrt am 17. November
1998, letzte Erneuerung am 29. Juni
2001, gültig bis 20. Juni 2002.
1.5.10 Flugverkehrsleiter E
Funktion Dienstleiter Kontrollturm (DL) bis 21:03 UTC
Person Schweizer Staatsbürger, Jahrgang 1947
Lizenz für Flugverkehrsleiter, ausgestellt durch das
Bundesamt für Zivilluftfahrt am 29. August
1973, letzte Erneuerung am 21. September
2001, gültig bis 29. August 2002.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 34 von 152
1.6 Angaben zum Luftfahrzeug
1.6.1 Flugzeug HB-IXM
1.6.1.1 Allgemeines
Luftfahrzeugmuster AVRO 146-RJ100
Hersteller British Aerospace Ltd., Woodford, Cheshire
England
Eintragungszeichen HB-IXM
Werknummer E3291
Baujahr 1996
Eigentümer Crossair Limited Company for Regional European
Air Transport, CH-4002 Basel
Halter Crossair Limited Company for Regional European
Air Transport, CH-4002 Basel
Lufttüchtigkeitszeugnis Vom 23. August 1996, ausgestellt durch das
Bundesamt für Zivilluftfahrt, gültig bis auf Widerruf
Eintragungszeugnis Vom 23. August 1996, ausgestellt durch das
Bundesamt für Zivilluftfahrt
Flugstunden der Zelle 13194:30
Anzahl Zyklen (Landungen) der Zelle 11518
Triebwerke 4 Allied Signal LF507-1F
Auxiliary power unit (APU) Sundstrand 4501690A
Spannweite 26.34 m
Länge 31.0 m
Höhe 8.59 m
Flügelfläche 77 m2
Schub pro Triebwerk 3175 kN
Treibstoffverbrauch im Reiseflug 1800 kg/h
Reichweite bei maximaler Nutzlast 3000 km
Maximale Reiseflughöhe 9400 m/M
1.6.1.2 Triebwerk Nummer 1
Werknummer LF07623
Betriebszeit seit Herstellung 10474 h
Flugzyklen seit Herstellung 9153
Betriebszeit seit Einbau in HB-IXM 10421 h
Flugzyklen seit Einbau in HB-IXM 9108
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 35 von 152
1.6.1.3 Triebwerk Nummer 2
Werknummer LF07572
Betriebszeit seit Herstellung 11218 h
Flugzyklen seit Herstellung 9363
Betriebszeit seit Einbau in HB-IXM 3405 h
Flugzyklen seit Einbau in HB-IXM 2972
1.6.1.4 Triebwerk Nummer 3
Werknummer LF07434
Betriebszeit seit Herstellung 13336 h
Flugzyklen seit Herstellung 11508
Betriebszeit seit Einbau in HB-IXM 501 h
Flugzyklen seit Einbau in HB-IXM 407
1.6.1.5 Triebwerk Nummer 4
Werknummer LF07391
Betriebszeit seit Herstellung 13778 h
Flugzyklen seit Herstellung 11828
Betriebszeit seit Einbau in HB-IXM 2898 h
Flugzyklen seit Einbau in HB-IXM 2529
1.6.1.6 Auxiliary Power Unit
Werknummer SPE967480
Betriebszeit seit Herstellung 10239 h
Flugzyklen seit Herstellung 12214
Betriebszeit seit Einbau in HB-IXM 4242 h
Flugzyklen seit Einbau in HB-IXM 3739
1.6.1.7 Navigationsausrüstung
Für die Navigation standen den Piloten die folgenden Systeme zur Verfügung:
• Dual Navigation Management System (NMS) von Global Wulfsberg
• Dual Inertial Reference System (IRS) von Honeywell
• Dual VHF-Navigation System von Collins
• Dual DME-System von Collins
• Dual ADF-System von Collins
• Dual Air Data System (ADS) von Honeywell
• Dual Radio Altimeter System von Collins
• Standby Attitude Indicator von Smith Industries
• Standby Altitude/Airspeed Indicator von Smith Industries
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 36 von 152
Diejenigen Navigationssysteme, welche während der Anflugphase von CRX 3597 das
Unfallgeschehen hätten beeinflussen können, wurden untersucht.
Das navigation management system (NMS) wurde als Teil des flight guidance system
betrachtet.
1.6.1.8 Kommunikationsausrüstung
Die Kommunikationsausrüstung bestand aus den folgenden Systemen:
• Audio integrating system
• Passenger address system
• Cabine interphone system
• Dual VHF communication system
• Mobile Telefone
1.6.2 Masse und Schwerpunkt
Als Grundlage für die Bestimmung von Masse und Schwerpunktlage im Unfallzeitpunkt
dienten die Einträge in das Beladungsblatt (load sheet) des Flugzeuges, welches für
den Flug CRX 3597 in Berlin-Tegel erstellt wurde. Diese Daten wurden durch die Befunde
an der Unfallstelle und durch Aussagen auf dem CVR bestätigt.
Total traffic load 2477 kg
Dry operating mass 26731 kg
Zero fuel mass actual 29208 kg Max 37421 kg
Actual block fuel 5650 kg
Take off fuel 5400 kg
Take off mass actual 34608 kg Max 46039 kg
Trip fuel 2500 kg
Landing mass actual 32108 kg Max 40142 kg
Dry operating index 7
Deadload index 14
Loaded index at zero fuel mass -7
Loaded index at take off mass 18
Stabilizer setting for take off 3.6
Masse und Schwerpunkt lagen innerhalb der zulässigen Grenzen. Im Unfallzeitpunkt
befanden sich laut Aussage der Besatzung anlässlich des check for approach 3200 kg
Treibstoff an Bord.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 37 von 152
1.6.3 Flugzeugsteuerung
1.6.3.1 Primäre Flugzeugsteuerung
Die DFDR Aufzeichnungen der Quer-, Höhen- und Seitenruder waren nicht auswertbar.
Die aufgezeichneten Werte der Ruderausschläge im Endanflug bis zur ersten Baumberührung
lagen neben den Sollwerten, welche dieser Flugphase entsprechen.
Die Funktionstüchtigkeit der primären Flugzeugsteuerung musste daher aufgrund einer
Analyse von gesicherten Flugparametern verifiziert werden (vgl. Kapitel 2.1.2).
1.6.3.2 Sekundäre Flugzeugsteuerung
Die DFDR Daten der sekundären Flugzeugsteuerung waren gut auswertbar und zeigten
kein fehlerhaftes Verhalten. Die aufgezeichneten Positionen entsprachen der für den
Landeanflug vorgesehenen Konfiguration.
1.6.4 Triebwerke
1.6.4.1 Sichtkontrolle
Bei allen Triebwerken war die mechanische Beschädigung der Verdichterschaufeln (fan
blades) minimal. In allen Triebwerken wurde Tannenreisig, teilweise vermischt mit
dickeren Ästen, gefunden.
Die Triebwerke 1 und 2 wiesen an der Unterseite starke Beschädigungen und starke
Brandspuren auf. Beide Triebwerke waren noch mit der linken Flügelstruktur verbunden.
Die Triebwerke 3 und 4 wurden beim ersten Bodenkontakt vom rechten Flügel abgetrennt.
Die Verschalungen des Triebwerkeinlasses waren stark deformiert und der Einlassbereich
teilweise mit Erdreich gefüllt.
Aufgrund der Verformung der rotierenden Teile kann angenommen werden, dass alle
Triebwerke beim Aufschlag mittlere Leistung abgaben.
1.6.4.2 Analyse der Daten von Digital Flight Data Recorder und Engine Life Computer
Aus den Aufzeichnungen des DFDR wurden die Daten der Leistungshebelposition (power
lever angle - PLA) der Triebwerke 1 bis 4 mit den entsprechenden Drehzahlen des
Niederdruckverdichters N1 während der letzten 15 Flugminuten verglichen.
Die Regulierung der Triebwerke erfolgte in der letzten Phase von 15 Minuten unauffällig,
sie bewegte sich aus operationeller Sicht im normalen Rahmen und entsprach den
Leistungsanforderungen dieser Flugphase. Die Leistungshebel wurden zwei Sekunden
vor der letzten Aufzeichnung in Richtung Startleistung bewegt. Die Drehzahl aller
Triebwerke folgte der Leistungshebelposition mit der üblichen Verzögerung. Im Wrack
wurde festgestellt, dass sämtliche Leistungshebel annähernd in der vordersten Position
standen.
Die am 23. November 2001 ausgelesenen Daten des engine life computer (ELC) wurden
ausgewertet und dabei die letzten 1000 Flüge verglichen. Keiner der vorhandenen
Parameter wies auf ein Triebwerkproblem hin.
1.6.4.3 Einbau Oil Indicator
Im Wrack wurde festgestellt, dass der oil indicator für das Triebwerk 1 um 180° verdreht
eingebaut war (vgl. Anhang 2). Die Untersuchung ergab, dass an diesem Anzeigegerät
am 6. Oktober 2001 letztmals dokumentiert gearbeitet wurde. Während der
Zeit bis zum Unfall wurde der verdrehte Einbau des Instrumentes durch niemanden
nachweisbar beanstandet.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 38 von 152
1.6.5 Auxiliary Power Unit
1.6.5.1 Sichtkontrolle
Die auxiliary power unit (APU) wurde aus dem Heckteil des Flugzeuges ausgebaut. Das
Gerät war äusserlich unbeschädigt. Am Lufteintrittsgitter wurde angesaugtes Laub gefunden,
was darauf hinweist, dass die APU beim Unfall in Betrieb war.
1.6.5.2 Dokumentation des Unterhalts
Bei der Durchsicht der technischen Unterlagen wurde festgestellt, dass die APU seit der
Inbetriebnahme des Flugzeuges eine hohe Störanfälligkeit aufwies. Insgesamt wurde
während der Lebenszeit des Unfallflugzeuges die APU mehr als hundert Mal beanstandet.
Nach Aussagen der Mitarbeiter von Crossair bestanden diese Probleme bei allen Flugzeugen
vom Typ AVRO 146-RJ85/100, die mit dieser APU ausgerüstet waren.
In der DDL war vermerkt, dass die APU erst beim zweiten Versuch startet. Auch beim
Unfallflug lief die APU erst beim zweiten Versuch an.
1.6.6 Ice Detection System
Es gibt keine Hinweise für Funktionsstörungen beim ice detection system.
1.6.7 Flight Guidance System
1.6.7.1 Electronic Flight Instrument System
1.6.7.1.1 Beschreibung des Systems
Das electronic flight instrument system (EFIS) beinhaltet vier identische display units
(DU), zwei symbol generators (SG), zwei EFIS control panels (ECP) und zwei display
dimming panels (DP).
Die display units (DU) sind in Paaren, übereinander auf dem linken und rechten Instrumentenpanel
angeordnet. Die obere DU hat die Funktion eines primary flight display
(PFD) und die untere diejenige eines navigation display (ND).
Das PFD zeigt die folgenden Flugparameter an: Aircraft attitude, airspeed, speed trend,
mach number, vertical speed, radio altitude, decision height, flight director, vertical deviation,
lateral deviation, marker beacon. Ferner zeigt das PFD den gewählten bzw.
vorgewählten mode (roll, pitch, thrust) des auto flight systems an.
Das ND zeigt die Navigationsdaten heading, selected heading, course, bearing, deviation,
distance an. Es kann in den verschiedenen Formaten ROSE, ARC, MAP und PLAN,
welche auf dem ECP wählbar sind, betrieben werden.
Mit dem EFIS control panel (ECP) wird das Anzeigeformat (ROSE, MAP etc.), die anzuzeigenden
Parameter und deren Quelle, sowie der zu überdeckende Bereich (RANGE)
für das ND bestimmt. Mit dem Druckknopf 2nd CRS kann zusätzlich zum gewählten
course ein second course gewählt werden. Beispiel: Gewählter course LNAV 1, second
course VOR 2. Die NAV data pushbuttons erlauben das Ein- und Ausblenden von nav
aids, airports oder weiteren Angaben.
Der EFIS symbol generator (SG) bezieht Daten von IRS, ADC, RA, VOR, ILS, NMS, WXR
und DFGS. Er erzeugt die Symbole, welche auf den PFD und ND dargestellt werden
und überwacht bzw. vergleicht eingehende Signale. In den beiden SG werden die Parameter
attitude, glide slope, localizer, radio altitude, airspeed verglichen. Ungültige
Parameter werden entsprechend gekennzeichnet. Beispiel: Treten Unterschiede bei
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 39 von 152
den Fluglageparametern pitch und roll auf, wird in beiden primary flight displays ATT in
gelber Farbe angezeigt. Liefert eine inertial reference unit ein falsches Eingangssignal,
wird ATT in roter Farbe auf der entsprechenden Seite angezeigt. Daten werden sowohl
analog wie auch digital dargestellt.
Auf dem Instrumentenpanel des Kommandanten ist ein Wählschalter angeordnet, welcher
bei Ausfall eines EFIS symbol generator (SG) erlaubt, auf den intakten SG umzuschalten
(BOTH1-NORM-BOTH2).
Die Funktionen des EFIS sind laufend durch ein umfassendes self-monitoring system
überwacht. Fehlfunktionen können auf dem PFD und ND als fault codes erkannt werden.
Der symbol generator vermag bis zu 20 Fehlermeldungen pro Flug von 10 Flügen
zu speichern. Es kann auch ein return-to-service test durchgeführt werden.
Das EFIS Nummer 1 bezieht seinen Strom aus dem essential bus ESS 115 VAC, das
EFIS Nummer 2 wird aus der Sammelschiene 115 VAC2 gespiesen.
1.6.7.1.2 Non Volatile Memories
In den EFIS symbol generators waren non volatile memories eingebaut, welche über
den Betriebszustand dieser Geräte Aufschluss geben konnten. Diese memories wurden
ausgewertet und es zeigte sich, dass während des Unfallfluges keine Fehlfunktionen
aufgezeichnet wurden (vgl. Kap. 1.19).
1.6.7.2 Automatic Flight System
1.6.7.2.1 Beschreibung des Systems
Das automatic flight system (AFS), im AVRO 146-RJ100 auch digital flight guidance
system (DFGS) genannt, beinhaltet im Wesentlichen zwei digital flight guidance computer
(DFGC), ein mode control panel (MCP), ein thrust rating panel (TRP), sowie eine
Anzahl servos/actuators und position sensors, um die Steuerbefehle des DFGC umzusetzen.
Der digital flight guidance computer übt die folgenden Hauptfunktionen aus:
• presentation of flight director commands
• three axis autopilot control including automatic landing
• autothrottle speed and thrust control including thrust rating limits calculation
• windshear detection and recovery guidance
• pitch trim, flap trim compensation
• yaw damper and turn-coordination
• aural and visual altitude alerting
• built-in fault monitoring and maintenance test system
Der DFGC erzeugt einen flight director command für die folgenden Funktionen:
• acquisition and holding of airspeed, mach, vertical speed and altitude
• acquisition and holding of a selected heading
• capture and holding of a selected VOR radial or ILS localizer beam
• capture and holding of an ILS glide slope beam
• capture and tracking of a flight plan provided by the navigation management system
• commands for take off and go around
• windshear recovery guidance
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 40 von 152
Flight director commands werden auf dem EFIS primary flight display (PFD) dargestellt
und vom Piloten umgesetzt. Ist der Autopilot eingeschaltet, so werden die vom DFGC
gerechneten Steuerbefehle direkt via Servos ausgeführt.
Auf dem mode control panel (MCP) werden airspeed, mach, heading, clearance altitude
und vertical speed gewählt. Ebenso werden auf dem MCP flight director/autopilot modes
gewählt resp. vorgewählt. Diese werden auf dem primary flight display (PFD) zur
Bestätigung angezeigt. Flight director, autopilot und autothrottle werden auf dem MCP
aktiviert.
Der Autopilot kontrolliert die Flugbewegungen über Querruder (ailerons), Höhenruder
(elevators) und Seitenruder (rudder). Länger anhaltende Steuerausschläge auf dem
elevator control tab werden durch das elevator trim tab (pitch trim) reduziert.
Das Seitenruder (rudder) wird auf zwei verschiedene Arten betrieben: Im series mode,
als yaw damper, werden die Seitenruderausschläge stark limitiert. Im parallel mode,
während autoland, take off und go around, ist diese Begrenzung der Seitenruderausschläge
nicht wirksam. Während dieser Phasen können Vollausschläge für die Führung
des Flugzeuges am Boden (ground rollout) bzw. für die Reaktion auf einen allfälligen
Triebwerkausfall (engine out compensation) erforderlich sein. Die Funktionen autoland,
take off und go around werden im DFGC redundant in zwei Kanälen gerechnet und
verglichen (fail passive operation).
Der DFGC erhält Signale vom IRS (attitude, attitude rate, heading, ground speed, acceleration),
vom ADC (altitude, vertical speed, speed, mach), vom VOR, ILS (course, deviation)
und vom NMS (steering command). Beim Einschalten des Autopiloten können
mit den pushbuttons NAV1 oder NAV2 die entsprechenden Sensoren gewählt werden.
Im autothrottle speed/mach control mode oder thrust control mode arbeitet der digital
flight guidance computer (DFGC) mit dem full authority digital engine control (FADEC)
zusammen. In einem ersten Regelkreis werden die vier Leistungshebel durch den
DFGC über einen gemeinsamen Servomotor in die dem thrust target entsprechende
Stellung gebracht. Das thrust target wird im DFGC gerechnet. In einem weiteren Regelkreis
reguliert das FADEC den fuel flow jedes einzelnen Triebwerkes entsprechend
dem thrust target. Kleinere Unterschiede werden durch das FADEC automatisch ausgeglichen.
Zur Kontrolle wird das thrust target auf dem primary engine display (PED)
angezeigt. Die Triebwerke selbst stehen immer unter der Kontrolle des FADEC. Die auf
dem thrust rating panel (TRP) angezeigte thrust limit (TOGA MAX, TOGA REDU, MCT,
CLB MAX, CLB NORM) wird dabei eingehalten.
Der DFGC berechnet für die verschiedenen Flugzeug-Konfigurationen eine maximalund
eine minimal-zulässige Geschwindigkeit. Auch bezüglich der Fluglage sind Grenzwerte
gesetzt. Eine der Aufgaben des Autopiloten ist es, das Flugzeug innerhalb der
vorgegebenen speed/attitude envelope zu halten.
Durch Drücken auf einen pushbutton auf dem Leistungshebel 2 oder 3 wird ein auto go
around eingeleitet, sofern der autopilot eingeschaltet ist. In diesem mode wird die
Triebwerkleistung automatisch auf go around thrust erhöht, der gegenwärtige ground
track gehalten und ein vertikales Profil mit dem maximum climb gradient geflogen.
Mit einem pushbutton am linken bzw. rechten Steuerhorn kann der Autopilot ausgeschaltet
werden. Beim beabsichtigten oder unbeabsichtigten Ausschalten ertönt ein
Warnhorn, welches durch kurzes Drücken auf den gleichen pushbutton zum Verstummen
gebracht werden kann.
Mit dem Umschalter FGC SELECT im overhead panel wird bestimmt, welcher der beiden
DFGC aktiv sein soll. Der verbleibende DFGC steht als hot spare zur Verfügung.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 41 von 152
Der DFGC beinhaltet ein integrity monitoring system. Fehlfunktionen werden auf dem
flight guidance system (FGS) advisory annunciator oder auf dem central status panel
angezeigt. Beim Aufstarten wird automatisch ein power-up test durchgeführt. Das Resultat,
PASS FGC 1 oder 2 oder FAIL FGC 1 oder 2, wird auf dem PFD dargestellt. Ferner
kann ein return to service test durchgeführt werden. Während einem autoland approach
läuft ein autoland test ab. Die Besatzung wird laufend über Bereitschaft/Status
des autoland systems informiert.
Das digital flight guidance system DFGS Nummer 1 wird aus den Sammelschienen ESS
115 VAC, 28 VDC1, ESS 28 VDC, EMERG 28 VDC, ESS/BATT bus gespiesen, während
das DFGS Nummer 2 seinen Strom von 115 VAC2, 28 VDC2, EMERG 28 VDC und
ESS/BATT bus erhält.
1.6.7.2.2 Non Volatile Memories
In den digital flight guidance computer waren non volatile memories eingebaut, welche
über den Betriebszustand dieser Geräte Aufschluss geben konnten. Diese memories
wurden ausgewertet und es zeigte sich, dass während des Unfallfluges keine Fehlfunktionen
aufgezeichnet wurden (vgl. Kap. 1.19).
1.6.7.2.3 Verwendung des Automatic Flight System
Während der letzten 30 Minuten des Unfallfluges war das automatic flight system ununterbrochen
eingeschaltet.
Das autothrottle system war bis auf FL 235 im Mach mode, darunter im IAS mode. Die
gewählte Fluggeschwindigkeit wurde gemäss den Aufzeichnungen des DFDR laufend
verringert. Die letzte gewählte Geschwindigkeit betrug 116 KIAS.
Der lateral mode des Autopiloten änderte in der folgenden Reihenfolge: LNAV 1, HDGSEL,
VORNAV 1, LNAV 1, VORNAV 1. In der letzten Phase des Unfallfluges war der
mode VORNAV 1 aktiv. Der letzte gewählte VOR course betrug 275°.
Der vertical mode des Autopiloten änderte mehrmals zwischen ALT HOLD und VERT
SPD. In der letzten Phase des Unfallfluges war der mode VERT SPD aktiv. Die gewählte
Sinkgeschwindigkeit betrug zu diesem Zeitpunkt 1200 ft/min.
Um 21:06:34 UTC wurde der Autopilot ausgeschaltet. Auf dem CVR wurde die entsprechende
Warnung aufgezeichnet.
1.6.7.3 Navigation Management System
1.6.7.3.1 Beschreibung des Systems
Das GNS-X von Global Wulfsberg ist ein integriertes navigation management system
(NMS), welches die folgenden Funktionen unterstützt:
• Bestimmen der Position mittels verschiedener Sensoren (GPS, IRS, DME/DME,
VOR/DME)
• Berechnen von Flugparametern (ground speed, track angle, drift angle, desired
track, crosstrack distance, distance to waypoint, bearing to waypoint, estimated
time of arrival, wind speed and direction)
• Generieren einer Route aufgrund von manuell eingegebenen waypoints und unter
Zuhilfenahme der navigation data base (NDB)
• Abrufen einer vorprogrammierten company route, einer standard instrument departure
route (SID) oder einer standard arrival route (STAR)
• Unterstützen der Treibstoffplanung
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 42 von 152
• Ausgeben von Navigationsdaten an das electronic flight instrument system (EFIS)
• Ausgeben von Steuersignalen an das automatic flight system (AFS).
Die manuelle Eingabe von waypoints entlang einer Route, das Abrufen einer company
route oder das Ändern einer Route werden über die control display unit (CDU) bewerkstelligt.
Der resultierende flightplan sowie die relevanten Navigationsparameter werden
dann auf diesem Gerät dargestellt.
Das Zusammenstellen einer company route umfasst im Wesentlichen das Aneinanderreihen
von waypoints zu einer durch eine Fluggesellschaft regelmässig beflogenen Route.
Solche Routen bekommen eine Bezeichnung, wie zum Beispiel: ZRH-GVA1. Diese
Arbeit wird in der Regel vom Operator am PC besorgt und umfasst die Eingabe von navigation
fix designators wie LSZH, FRI, EKRIT etc. Die fertiggestellten company routes
werden dann mittels eines data loaders in eine speziell dafür vorgesehene database im
NMS geladen. Die den navigation fix designators zugeordneten Daten (lat/long, variation
etc.) findet die navigation management unit in der navigation data base, welche
alle achtundzwanzig Tage einen update erfährt. Zweck der company routes ist eine
Vereinfachung der Programmierarbeit im cockpit.
Wird während der Flugvorbereitung eine company route abgerufen, so erstellt die navigation
management unit einen flightplan. Diesem kann nach erfolgter ATC clearance
eine standard instrument departure route (SID) vorgeschaltet werden. Die SID sind in
der navigation data base gespeichert und können durch die Piloten nicht verändert
werden. In der navigation management unit werden SID mittels eines set von sogenannten
procedural legs konstruiert. Da das System keinen Unterschied zwischen flyby
und fly-over waypoints macht, darf das GNS-X bei der Annäherung an einen fly-over
waypoint nur als sekundäres Navigationhilfsmittel verwendet werden. Diese Tatsache
limitiert die Anwendung der LNAV-Funktion in der terminal area eines Flugplatzes.
Im Reiseflug navigiert das navigation management system entlang eines definierten
flightplans, d.h. von waypoint zu waypoint. Mit der Funktion direct to (DTO) kann ein
beliebiger waypoint entlang dem flightplan direkt von der gegenwärtigen Position aus
angesteuert werden.
Von der navigation management unit generierte Steuersignale gelangen zum digital
flight guidance system (DFGS). Um diese Signale aufzuschalten, muss auf dem mode
control panel (MCP) der LNAV mode gewählt werden. Es ist möglich, den LNAV mode
vorzuwählen (arm) und dann den flightplan im heading select mode zu interzeptieren.
Das GNS-X navigation management system (NMS) umfasst die folgenden Komponenten:
• zwei navigation management units (NMU) mit je einem configuration module
• zwei control display units (CDU)
• eine gemeinsame global position unit (GPU).
Die NMU beinhaltet den navigation computer und die navigation data base. Der navigation
computer bezieht Signale vom IRS (position, velocity, heading), VOR (bearing),
DME (distance), air data computer (ADC) (true airspeed, altitude), der GPU (position)
und vom fuel flow system.
Die vortac position unit (VPU) ist ein Untersystem der NMU. Die VPU übernimmt die
Frequenzwahl für das VOR/DME und sie berechnet aus den eintreffenden Daten (bearing/
distance oder distance/distance) die geographische Position.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 43 von 152
Mit Daten des inertial reference system (IRS), der VPU und der GPU berechnet die navigation
management unit (NMU) die sogenannte composite aircraft position, welche
kontinuierlich aufdatiert wird.
Die CDU dient zur Eingabe respektive zur Darstellung von Navigationsdaten.
Mit dem LNAV Umschalter auf dem forward center pedestal kann bestimmt werden,
welche der beiden navigation management units (NMU) Daten zum EFIS navigation
display (ND) und zum EFIS primary flight display (PFD) des Kommandanten resp. des
Copiloten liefert.
Mit dem Umschalter in der Position LNAV 1 liefert die NMU 1 Daten an die EFIS des
Kommandanten und des Copiloten. Mit dem Umschalter in Position LNAV 2 liefert die
NMU 2 Daten an die EFIS des Kommandanten und des Copiloten. In der Position SPLIT
liefert die NMU 1 Daten an das EFIS des Kommandanten und die NMU 2 Daten an das
EFIS des Copiloten.
Die beiden navigation management units liefern navigation data an das EFIS und steering
commands an das DFGS.
Die Frequenzwahl für das VOR/DME-System kann durch die Besatzung von Hand oder
aber durch das navigation management system (NMS) erfolgen. Die Daten der von
Hand gewählten VOR/DME-Stationen werden auf dem electronic flight instrument system
(EFIS) und auf dem distance bearing indicator (DBI) angezeigt.
Eine DME interrogator unit kann in kurzer Folge bis zu fünf Bodenstationen ansprechen.
Vier dieser Kanäle werden ausschliesslich vom navigation management system
(NMS) angewählt und die ermittelten Distanzen werden zum NMS übertragen.
Das navigation management system wird durch ein Überwachungssystem in der NMU
laufend kontrolliert und Systemfehler werden der Besatzung angezeigt.
Die NMU 1 wird aus dem DC 1 bus, CDU 1 aus dem DC 1 bus, NMU 2 aus dem DC 2
bus, CDU 2 aus dem DC 2 bus und die GPU aus dem DC 1 bus gespiesen.
1.6.8 Navigationsausrüstung
1.6.8.1 Inertial Reference System
1.6.8.1.1 Beschreibung des Systems
Das inertial reference system (IRS) dient zur Berechnung von Flugzeugposition, Geschwindigkeit
(along track velocity), Kompasskurs (true/magnetic heading), Fluglage
und Flugzeugbeschleunigungen. Als Sensoren dienen drei laser gyros und drei Beschleunigungsmesser
(accelerometer). Aus Gründen der Redundanz sind zwei IRSSysteme
installiert.
Die Flugzeugposition wird an das navigation management system (NMS) weitergeleitet.
Kompasskurs und Fluglagereferenz werden auf den EFIS-displays dargestellt sowie für
die Steuerung des Flugzeuges durch das digital flight guidance system (DFGS) verwendet.
Weitere Benutzersysteme sind das Wetter Radar, das ground proximity warning
system (GWPS) und das traffic alert and collision avoidance system (TCAS). Durch den
digital flight data recorder (DFDR) werden die wesentlichen Parameter laufend aufgezeichnet.
Jedes IRS beinhaltet eine inertial reference unit (IRU) und eine mode select unit
(MSU). Die MSU der beiden IRS-Systeme sind in einem gemeinsamen Gehäuse untergebracht.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 44 von 152
Die IRU umfasst drei laser gyros und drei accelerometer, welche als Sensoren für die
Bestimmung von Flugzeugposition (inertial position), Geschwindigkeit (along track velocity),
Distanz (along track distance), Kompasskurs (true/magnetic heading), Fluglage
(attitude) und Flugzeugbeschleunigungen (accelerations) dienen. Die accelerometer
fühlen die Beschleunigungen entlang den X-, Y- und Z-Achsen. Die laser gyros sind so
angeordnet, dass sie eine Rotation um diese Achsen messen. Sowohl laser gyros als
auch accelerometer sind gegenüber dem IRU-Gehäuse resp. dem Flugzeugrumpf fix
montiert (strap down configuration). Dies bedingt, dass im Rechner der IRU eine virtuelle
Plattform gebildet werden muss. Diese Plattform wird während des Fluges mittels
der von den laser gyros gelieferten Daten laufend nachgeführt.
Während des Ausrichtens der Plattform am Boden (align mode) werden die accelerometer
zusätzlich zur Bestimmung des Erdmittelpunktes (local vertical) verwendet. Dies
bedingt, dass sich das Flugzeug während dieses Vorganges nicht bewegt. Die Erdrotation,
welche durch die laser gyros detektiert wird, dient zur Bestimmung des true north
heading. Das Ausrichten der Plattform (align mode) dauert in Mitteleuropa ca. zehn
Minuten. Vorgängig muss über das navigation management system (NMS) die present
position eingegeben werden.
Die MSU enthält einen Drehschalter und einen status annunciator. Mit dem Drehschalter
können die folgenden basic modes gewählt werden:
OFF – IRS ist ausgeschaltet.
ALN – Während der ersten zwanzig Sekunden führt die inertial section der IRU einen
power up self test durch. War dieser erfolgreich, beginnt das Ausrichten der virtuellen
Plattform (align mode). Die Lampe NAV OFF auf der MSU leuchtet während der Dauer
dieses Vorganges und ALN wird auf der control display unit (CDU) des navigation management
systems angezeigt. Tritt während des Ausrichtens (alignment) ein Fehler
auf, beginnt die Lampe NAV OFF zu blinken und der navigation mode kann nicht erreicht
werden. Für ein erfolgreiches alignment muss über das NMS die present position
eingegeben werden. Gegen Ende des alignment wird die eingegebene geographische
Breite (latitude) mit der durch die IRU errechneten latitude verglichen. Ebenso wird die
eingegebene Position mit der zuletzt gespeicherten Position des vorangehenden Fluges
verglichen und muss mit dieser innerhalb einer vorgegebenen Toleranz übereinstimmen.
NAV – Der Drehschalter auf der MSU kann in die Position NAV gebracht werden, nachdem
das alignment erfolgreich abgeschlossen worden ist. Die Lampe NAV OFF auf der
MSU erlischt nun. Je länger die IRU im align mode bleibt, desto genauer sind die errechneten
Daten. Im Normalfall wird der Drehschalter direkt in die Stellung NAV gebracht
und die IRU wechselt automatisch vom align mode in den navigation mode, sobald
das alignment abgeschlossen ist.
Im navigation mode liefert die IRU die errechnete inertial position an das navigation
management system. Die inertial position wird, ausgehend von der along track acceleration
über die along track velocity und schliesslich die along track distance, über eine
zweifache Integration errechnet. Ausgangspunkt für die Berechnung der inertial position
ist die von Hand eingegebene present position.
ATT – Im attitude mode kann das IRS im Flug nur noch die Daten standby attitude und
standby heading ans EFIS liefern, allerdings mit operationellen Einschränkungen. Dieser
mode ist nur für den Fall vorgesehen, in welchem das IRS zuvor gewisse Referenzdaten
verloren hat.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 45 von 152
Mit einem Umschalter auf dem Instrumentenpanel des Kommandanten kann zwischen
true heading und magnetic heading umgeschaltet werden. Der Schalter befindet sich
normalerweise in der Stellung ‘MAG’ und ist durch eine Schutzkappe gesichert.
Im Falle einer IRU Störung werden auf den entsprechenden EFIS displays die Warnungen
ATT und/oder HDG angezeigt. Mit dem Umschalter ATT/HDG kann auf die intakte
IRU umgeschaltet werden.
Jede IRU hat eine primäre und eine sekundäre Stromquelle. Die IRU 1 wird primär
über den ESS 115 VAC bus und sekundär über den BAT 28 VDC bus gespiesen, während
die IRU 2 in erster Linie über den 115 VAC2 bus und sekundär über den ESS 28
VDC bus versorgt wird.
1.6.8.2 VHF-Navigation System
1.6.8.2.1 Beschreibung des Systems
Das VHF-Navigationssystem empfängt Signale von UKW-Drehfunkfeuern (VHF omnidirectional
radio-range – VOR), Landekurssendern (localizer) und Gleitwegsendern (glide
slope) von Instrumentenlandesystemen (ILS) sowie Sendern von Einflugzeichen
(marker). Die in den entsprechenden Empfängern generierten bearing und deviation
Signale werden dann auf dem EFIS primary flight display (PFD), auf dem EFIS navigation
display (ND) und auf dem distance bearing indicator (DBI) angezeigt. Für den
Empfang der VOR- und der ILS-Signale sind separate Empfangsgeräte vorhanden. Die
ILS-Empfänger müssen die strengen internen Überwachungsanforderungen (internal
monitoring) für ILS Anflüge der Category III erfüllen. Die nachfolgende Beschreibung
beschränkt sich auf die VOR-Funktion.
Das Flugzeugmuster AVRO 146-RJ100 ist mit einem zweifachen (dual) VOR-System
ausgerüstet. Jedes der beiden Systeme besteht aus einem VOR-Empfänger, einer
VOR/ILS/DME control unit und einer VOR/LOC-Antenne.
Zweck eines VOR-Systems ist, automatisch das bearing vom Flugzeug zu einer Bodenstation
mit bekannten geographischen Koordinaten zu ermitteln. Stellt man nun auf
dem mode control panel (MCP) einen VOR course ein, so ist der EFIS symbol generator
in der Lage, die Kursabweichung (course deviation) zu berechnen. Der EFIS symbol
generator liefert ferner die TO/FROM-Information.
Das VOR bearing wird primär auf dem DBI dargestellt, sofern auf diesem der Umschalter
VOR/ADF auf VOR steht. Wird keine Bodenstation empfangen oder wird im VOREmpfänger
ein Fehler festgestellt, so erscheint auf dem DBI eine Warnflagge und der
bearing pointer geht in die “drei Uhr” Position (park position). Das VOR bearing kann
ebenfalls auf dem EFIS navigation display (ND) eingeblendet werden, wenn auf dem
EFIS control panel der BRG-Umschalter in der Stellung VOR steht.
Der auf dem mode control panel eingestellte VOR-course wird auf dem EFIS navigation
display (ND) dargestellt, wenn auf dem EFIS control panel der CRS-Umschalter in der
Stellung V/L steht. In dieser Schalterstellung wird ebenfalls die VOR-deviation dargestellt.
Die VOR-Frequenz wird auf der VOR/ILS/DME control unit gewählt. Eine zweite VORFrequenz
kann vorgewählt und mittels Knopfdruck abgerufen werden. Das VOR-System
arbeitet im Frequenzbereich 108.00 – 117.95 MHz, mit 50 kHz Kanalabstand (channel
spacing). Im Frequenzbereich 108 – 111 MHz sind nur die geraden Zehntelmegahertz
als VOR-Frequenzen vorgesehen.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 46 von 152
Zur Identifikation der VOR-Bodenstationen wird dem VOR-Sender ein spezifischer Morsecode
aufmoduliert. Dieser Morsecode kann über das Audiosystem abgehört werden.
VOR course und VOR deviation Signale stehen auch dem digital flight guidance computer
(DFGC) zur Verfügung. Im VOR mode führt das digital flight guidance system
(DFGS) das Flugzeug entlang einer selektierten VOR-Standlinie (VOR course). Der VOR
mode kann vorgewählt (armed) werden, z.B. im heading mode oder im LNAV mode.
Bei Annäherung an die VOR-Standlinie aktiviert dann der Autopilot automatisch den
VOR mode.
Das VOR-System wird durch ein Überwachungssystem im VOR-Empfänger und im EFIS
symbol generator laufend überwacht. Ein Systemfehler wird der Besatzung angezeigt.
Der VOR-Empfänger 1 wird über den emergency AC bus, der VOR-Empfänger 2 durch
den AC 2 bus versorgt. Die VOR/ILS/DME control unit 1 bezieht ihren Strom über den
emergency DC bus und die VOR/ILS/DME control unit 2 wird vom DC 2 bus gespiesen.
1.6.8.3 Entfernungsmessgerät – Distance Measuring Equipment
1.6.8.3.1 Beschreibung des Systems
Die AVRO 146-RJ100 ist mit einem zweifachen Entfernungsmessgerät (dual distance
measuring equipment – DME) ausgerüstet. Jedes der beiden DME-Systeme besteht aus
einer DME interrogator unit, einer VOR/ILS/DME control unit und einer Antenne im
L-Band (962 - 1213 MHz).
Zweck eines DME-Systems ist, die Distanz vom Flugzeug zu einer Bodenstation mit bekannten
geographischen Koordinaten zu ermitteln. DME-Bodenstationen sind meist örtlich
zusammen mit VOR-Bodenstationen angeordnet (co-located). Daher wird auch die
Frequenz über eine gemeinsame VOR/ILS/DME control unit gewählt.
Eine DME interrogator unit kann in kurzer Folge bis zu fünf Bodenstationen ansprechen.
Die Distanz zu der mittels VOR/ILS/DME control unit gewählten Bodenstation
wird auf dem electronic flight instrument system (EFIS) und auf dem distance bearing
indicator (DBI) angezeigt. Die Kanäle der übrigen vier Bodenstationen werden automatisch
vom navigation management system (NMS) angewählt und die ermittelten Distanzen
werden zum NMS übertragen.
Die DME interrogator unit sendet Impulspaare zur Bodenstation, die nach einer definierten
Verzögerungszeit mit gleichen Impulspaaren antwortet. Im Flugzeug wird dann,
unter Berücksichtigung der genannten Verzögerungszeit, die Zeitdifferenz zwischen
Ausstrahlung und Empfang dieser Impulspaare ermittelt, um die Distanz zu berechnen.
Mehrere Flugzeuge können mit der gleichen Bodenstation arbeiten.
Das DME-System arbeitet im Frequenzbereich des L-Bandes (962 - 1213 MHz). Es stehen
252 Kanäle zur Verfügung. Ein Teil dieser Kanäle ist jeweils mit einer der VORFrequenzen
gepaart. Wird auf der VOR/ILS/DME control unit eine VOR-Frequenz eingestellt,
so wählt man gleichzeitig den zugehörigen DME-Kanal.
Zur Identifikation der DME-Bodenstationen wird vom DME-Sender ein spezifischer Morsecode
aufmoduliert. Dieser Morsecode kann über das Audiosystem abgehört werden.
Das DME-System wird durch ein Überwachungssystem in der DME interrogator unit
laufend überwacht. Ein Systemfehler wird der Besatzung angezeigt. Von der
VOR/ILS/DME control unit aus kann zusätzlich ein selftest gestartet werden.
Die Betriebsart des DME-Systems wird an der VOR/ILS/DME control unit gewählt.
Das DME-System 1 bezieht Strom vom essential AC bus und vom essential DC bus. Das
DME-System 2 bezieht Strom vom AC bus 2 und vom DC bus 2.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 47 von 152
1.6.8.4 Air Data System
1.6.8.4.1 Beschreibung des Systems
Kernstück des air data systems ist der digital air data computer (DADC). Dieser ist mit
dem static pressure system, dem pitot pressure system, einem Temperaturfühler für
die Aussentemperatur und zwei Sensoren für den Luftanströmwinkel (angle of attack
vanes) verbunden. Im DADC werden Druckänderungen im pitot/static system in elektrische
Signale umgewandelt. Die Verarbeitung der Signale am Eingang des DADC erfolgt
digital und die errechneten Parameter (altitude, airspeed, mach number, vertical
speed, total air temperature, angle of attack) gelangen schliesslich via databus zu den
Benutzersystemen (inertial reference units, digital flight guidance computers, navigation
management units, mode S transponders, air data accessory unit, flight data recorder,
EFIS symbol generators, servo altimeters, ground proximity warning computer).
Die interne Datenverarbeitung des digital air data computers wird laufend überwacht.
Bei allfälligen Fehlfunktionen erfolgt eine Kennzeichnung der fehlerhaften Ausgabedaten.
Diese Kennzeichnung wird durch die interne Überwachung der Benutzersysteme,
z.B. EFIS symbol generator, servo altimeter etc., als Fehlersignal erkannt.
Im EFIS symbol generator und im servo altimeter wird ausser den eintreffenden Daten
auch die interne Datenverarbeitung überwacht. Fehlfunktionen werden der Besatzung
angezeigt.
Im digital air data computer (DADC) wird das angle of attack Signal für die Korrektur
des Messfehlers beim Statischdrucksystem (static source error correction) verwendet.
Weitere Korrekturfaktoren werden aus im DADC gespeicherten Tabellen entnommen.
Die barometrische Höhe wird im servo altimeter angezeigt. Die auf Standarddruck basierende
Höhe wird im mode S transponder für die Höhenübermittlung (mode C) verwendet.
Die Fluggeschwindigkeit (computed airspeed, mach number) und die Vertikalgeschwindigkeit
(vertical speed) werden auf dem EFIS primary flight display (PFD) angezeigt.
Beim Überschreiten der höchstzulässigen Betriebsgeschwindigkeit Vmo bzw. höchstzulässigen
Betriebsmachzahl Mmo wird eine akustische Warnung ausgelöst. Die im DADC
errechnete Vertikalgeschwindigkeit wird mit derjenigen vom inertial reference system
(IRS) gemischt.
Die AVRO 146-RJ100 ist mit einem zweifachen (dual) air data system ausgerüstet. Beide
digital air data computer (DADC) arbeiten unabhängig voneinander. Im Normalfall
werden auf dem linken PFD und auf dem linken servo altimeter Daten vom DADC 1
dargestellt. Daten des DADC 2 erscheinen auf der rechten Seite. Bei Ausfall eines
DADC kann mittels eines Umschalters auf dem Instrumentenpanel des Kommandanten
auf den intakten DADC umgeschaltet werden. Auf beiden PFD erscheint dann ein Hinweis
in gelber Farbe ‘ADC1’ oder ‘ADC2’.
Die Werte der Fluggeschwindigkeit werden in beiden EFIS symbol generators verglichen.
Eine Abweichung ausserhalb einer festgelegten Toleranz wird als ‘SPD’ in gelber
Farbe auf beiden PFD angezeigt.
Zusätzlich zu den beiden air data systems ist die AVRO 146-RJ100 mit einem standby
altitude/airspeed indicator ausgerüstet. Dieser muss von den Piloten verwendet werden,
wenn die primären Anzeigen unterschiedliche Werte anzeigen. Der standby altitude/
airspeed indicator ist mit einem unabhängigen pitot/static system ausgerüstet.
Am Boden können die beiden DADC mittels einer self test Funktion geprüft werden.
Das air data system wird wie folgt mit Strom versorgt:
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 48 von 152
DADC 1 ESS 115 VAC bus
DADC 2 AC 2 115 VAC bus
AOA vane 1 ESS 26 VAC bus
AOA vane 2 AC 2 115 VAC bus
Linker servo altimeter ESS 115 VAC bus, ESS 26 VAC bus
Rechter servo altimeter AC 2 115 VAC bus, AC 2 26 VAC bus
Standby altitude/airspeed indicator EMERG/BATT 28 VDC, EMERG 28 VDC
1.6.8.4.2 Non Volatile Memories
In den air data computer waren non volatile memories eingebaut, welche über den Betriebszustand
dieser Geräte Aufschluss geben konnten. Diese memories wurden ausgewertet
und es zeigte sich, dass während des Unfallfluges und der neun vorangehenden
Flüge kein Fehler aufgezeichnet wurde (vgl. Kap. 1.19).
1.6.8.5 Radarhöhenmesser
1.6.8.5.1 Beschreibung des Systems
Das radio altimeter system dient zur Anzeige der genauen Höhe über Grund während
des Anfluges und bei der Landung, sofern diese Höhe weniger als 2500 ft beträgt.
Im Flugzeug sind zwei identische Radarhöhenmessersysteme installiert. Jedes besteht
aus einem für Instrumentenanflüge der Kategorie III A tauglichen Sender/Empfänger
und zwei Antennen.
Die Radarhöhe wird auf dem EFIS primary flight display (PFD) angezeigt. Die gemessene
Höhe des radio altimeter transceiver 1 wird auf dem PFD des Kommandanten,
diejenige des radio altimeter transceiver 2 auf dem PFD des Copiloten dargestellt. Die
digitale Anzeige ist grün, unterhalb der decision height (DH) wechselt sie auf gelb. Fällt
ein radio altimeter transceiver aus, so wird automatisch die Höhe des verbleibenden
radio altimeter transceiver angezeigt und es erscheint ein ‘RA’ in weiss neben der Höhenanzeige.
Fallen beide radio altimeter transceiver aus, so verschwinden beide Höhenanzeigen
und es wird ein ‘RA’ in rot angezeigt. Stimmen die Höhenangaben links
und rechts nicht überein, erscheint ein ‘RA’ in gelb neben beiden Höhenanzeigen.
Der Knopf für das Einstellen der decision height (DH) befindet sich auf dem EFIS dimming
panel. Die DH kann zwischen 0 und 500 ft eingestellt werden und wird dann auf
dem jeweiligen PFD in der Farbe cyan angezeigt (z.B. DH/100).
Wenn das Flugzeug unter eine Höhe absinkt, die 50 ft über der DH liegt, beginnt die
DH-Anzeige zu blinken, um die Besatzung zu warnen. Bei Erreichen der decision height
ändert die blinkende DH-Anzeige auf ein ständig leuchtendes ‘DH’ in gelb und gleichzeitig
ertönt die akustische Warnung ‘minimums’. Die Warnung ‘minimums’ wird nur
von der DH-Einstellung auf der Seite des Kommandanten beeinflusst.
Die akustische Warnung ‘minimums’ wird vom ground proximity warning computer
(GPWC) erzeugt. Nebst dieser Warnung werden die Radarhöhen 500, 100, 50, 40, 30,
20 und 10 ft mit synthetischer Stimme ausgerufen.
Ausser an das EFIS wird die Radarhöhe auch an die folgenden Systeme geliefert:
• DFGC (beide radio altimeter transceiver)
• GPWS (nur radio altimeter transceiver 1)
• FDR (beide radio altimeter transceiver)
• TCAS (beide radio altimeter transceiver)
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 49 von 152
Wird der Testknopf auf einem der EFIS dimming panel gedrückt, so führt der entsprechende
radio altimeter transceiver einen self test aus, wobei eine Höhe von 40 ft angezeigt
wird.
Der radio altimeter transceiver 1 bezieht Strom vom AC essential bus via avionics master
switch 1 und der radio altimeter transceiver 2 bezieht Strom vom AC bus 2 via avionics
master switch 2.
1.6.9 Befunde nach dem Unfall
1.6.9.1 Electronic Flight Instrument System
Ort Bedieneinheit/Anzeige Stellung
instrument panel links EFIS Umschalter NORM
Schutzkappe intakt
EFIS 1 MSTR (lever lock
switch)
ON
display dimming panel Drehknopf für das Wetterradar
im Gegenuhrzeigersinn am
Anschlag
instrument panel rechts EFIS 2 MSTR (lever lock
switch)
ON
EFIS control panel links bearing selector (BRG) VOR
range selector (RNG) 10
course selector (CRS) OFF
format MAP
EFIS control panel rechts bearing selector (BRG) OFF
range selector (RNG) 10
course selector (CRS) LNAV
format MAP
1.6.9.2 Inertial Reference System
Ort Bedieneinheit/Anzeige Stellung
instrument panel links MAG/TRU Umschalter MAG
Schutzkappe intakt
ATT/HDG BOTH 2
Schalter verbogen, Schutzkappe
abgebrochen
1.6.9.3 VHF-Navigation System
Ort Bedieneinheit/Anzeige Stellung
VOR/ILS/DME control unit
1
DME selector HOLD
VOR/ILS/DME control unit
2
DME selector HOLD
distance bearing indicator
(DBI) 1
Steuerkurs 302°
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 50 von 152
single pointer 3 Uhr
double pointer 3 Uhr
VOR/ADF Umschalter links ADF
VOR/ADF Umschalter
rechts
ADF
distance bearing indicator
(DBI) 2
Steuerkurs nicht feststellbar, Skala frei
drehend
single pointer abgerissen
double pointer frei drehend, mechanisch
beschädigt
VOR/ADF Umschalter links ADF
VOR/ADF Umschalter
rechts
leicht unterhalb der Position
ADF, mechanisch beschädigt
1.6.9.4 Air Data System
Ort/Instrument Bedieneinheit/Anzeige Stellung
servo altimeter links flag sichtbar
baro setting 1024 hPa
altimeter bug 0
altitude drum ~ 1920 ft
Zeiger ~ 900 ft
servo altimeter rechts flag sichtbar
baro setting 1024 hPa
altimeter bug ~ 390 ft (MDA 2390 ft)
altitude drum ~ 1890 ft
Zeiger ~ 890 ft
standby altitude/airspeed
indicator
baro setting 1024 hPa
altitude drum ~ 3000 ft
Zeiger Höhenmesser ~ 450 ft
Zeiger Geschwindigkeit 0
instrument panel links air data Umschalter NORM
Schutzkappe intakt
1.6.10 Ground Proximity Warning System
Das ground proximity warning system (GPWS) erzeugt optische und akustische Warnungen,
wenn sich das Flugzeug in gefährlicher Weise dem Boden nähert. Ebenso generiert
das GPWS akustische Höhenangaben, um die Piloten über die Annäherung an
den Boden zu informieren.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 51 von 152
Der ground proximity warning computer (GPWC) überwacht und verarbeitet bestimmte
Signale vom Flugzeug und löst eine Warnung aus, wenn in eine der folgenden warning
envelopes eingedrungen wird:
• mode 1 excessive descent rate
• mode 2 excessive terrain closure rate
• mode 3 altitude loss after take off
• mode 4 unsafe terrain clearance
• mode 5 inadvertent descent below glideslope
• mode 6 altitude awareness call outs (radar altitude)
Für jeden Modus (mode) gibt es definierte akustische Warnungen (synthetic voice). Für
den Fall, dass mehrere akustische Warnungen gleichzeitig ansprechen sollten, haben
sie unterschiedliche Dringlichkeitsstufen. Eine stall warning oder eine wind shear warning
besitzt beispielsweise Vorrang gegenüber den GPWS Warnungen. Die akustischen
Warnungen für mode 1 bis 4 lösen zusätzlich eine optische Warnung GPWS ‚PULL UP’
aus. Um die verschiedenen Flugzeugkonfigurationen (flaps, gear) zu berücksichtigen,
sind die Warnungen für mode 2 und mode 4 in submodes aufgeteilt. Die warning envelopes
sind im aircraft maintenance manual ATA 34-46-00, im Crosscat maintenance
training manual, sowie im manufacturers operations manual VOL 1, book 1 ausführlich
beschrieben. Für die im Unfallflug relevanten mode 1 – excessive descent rate und
mode 2B – excessive terrain closure rate, sind die envelopes im Anhang 3 abgebildet.
Der GPWC benötigt für die Auslösung der Warnungen die folgenden Signale: radar altitude
(RA), vertical speed, altitude (ADC), inertial vertical speed (IRU), glide slope deviation
(ILS Rx), flaps position, landing gear position.
Um eine Fehlwarnung bei einer beabsichtigten Landung, mit Landeklappen nicht in
Landestellung, zu vermeiden, kann mit dem Schalter ‚FLAP WARN OVRD’ die aktuelle
Landeklappen-Position übersteuert werden (mode 4B).
Der GPWC bezieht 115 VAC vom essential bus. Beim Einschalten wird im GPWC ein
automatischer Test ausgelöst. Durch Drücken eines der Knöpfe GPWS/PULL UP/GP INHIBIT
im glare shield panel kann am Boden ein self test (short test or long test) ausgeführt
werden. Ein short test ist auch im Flug bei einer Radarhöhe von mehr als 1000
ft möglich. Gewisse Funktionen des GPWC werden im Flug laufend überwacht. Ein Fehler
im GPWS löst die GPWS INOP Warnung im central status panel aus.
1.6.11 ATC Transponder System
Beim air traffic control (ATC) transponder system handelt es sich um das flugzeugseitige
Element eines Luftüberwachungssystems, welches unter der Bezeichnung secondary
surveillance radar system (SSR) bekannt ist. Das SSR ermöglicht es dem Flugverkehrsleiter,
Flugzeuge zu identifizieren und deren Höhe zu erkennen. Das SSR ergänzt
das primary radar system .
Das Flugzeug war mit einem mode S transponder ausgerüstet. Neben den bereits erwähnten
Funktionen kann der mode S transponder zusätzliche Daten übertragen. Diese
Funktion wird auch für die Übertragung von TCAS-Daten benutzt.
Um die angestrebte Verfügbarkeit zu gewährleisten, ist die AVRO 146-RJ100 mit einem
dual ATC transponder system ausgerüstet. Die Bedienung erfolgt von einer gemeinsamen
Bedienungseinheit aus, welche in der Mittelkonsole eingebaut ist.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 52 von 152
Um die verschiedenen Luftfahrzeuge identifizieren zu können, wird jedem Flug eine
charakteristische Kennung (squawk) zugeordnet. Diese Nummer (vierstellig, oktal) wird
auf Anordnung des Flugverkehrsleiters an der Bedienungseinheit eingegeben und in binärer
Form ausgesendet. Ein Bedienungsknopf auf der Bedienungseinheit dient zum
ein- und ausschalten des ATC transponders. Mit einem weiteren Knopf kann bestimmt
werden, welcher air data computer (ADC) für die Angabe der Höhe benützt wird, oder
ob diese Funktion gänzlich unterdrückt werden soll. Ferner kann zwischen dem
transponder 1 und dem transponder 2 umgeschaltet werden. Die Lampe XPDR FAIL
zeigt an, wenn der gewählte transponder defekt ist (continuous built-in test). Mit dem
Testknopf kann das korrekte Funktionieren des gewählten transponders nach Unterhaltsarbeiten
oder vor dem Flug überprüft werden.
Für jeden ATC transponder ist je eine L-Band Antenne oberhalb und unterhalb des
Rumpfes angeordnet. Je nach Fluglage wird die obere oder die untere Antenne benützt.
Die Umschaltung erfolgt automatisch.
Der ATC transponder 1 bezieht Strom vom ESS 115VAC bus. Der ATC transponder 2
bezieht Strom vom AC 2 115VAC bus.
1.6.12 Unterhalt des Luftfahrzeuges
Aus den Unterlagen über den Unterhalt des Flugzeuges war ersichtlich, dass die vom
Unterhaltsprogramm vorgeschriebenen Arbeiten terminlich korrekt und vollständig abgerufen
und durchgeführt wurden. Alle checks wurden innerhalb der vom BAZL vorgeschriebenen
Intervalle inklusive Toleranzen ausgeführt.
Die Lebenslaufakten der periodischen Kontrollen, Beanstandungen sowie die Liste ausgewechselter
Teile seit dem letzten C2 check im Mai 2000 wurden eingehend geprüft
und, mit Ausnahme der APU sowie der Kalibration von Höhenmesser und DFDR Sensoren,
als korrekt und vollständig beurteilt (vgl. Kap. 1.17.1.11).
1.6.13 Prüfung des verwendeten Treibstoffs
Es konnte keine analysierbare Menge Treibstoff sichergestellt werden. Der grösste Teil
des Treibstoffes verbrannte, während der Rest im Boden versickerte.
1.7 Wetter
1.7.1 Zusammenfassung
Der Linienflug CRX 3597 (Berlin-Zürich) verlief ungefähr parallel zu einer über Westeuropa
liegenden Warmfront. Im südlichen Streckenteil dürfte das Flugzeug auf FL 270
zeitweise in den hohen Wolken der Warmfront geflogen sein.
Beim Absinken tauchte das Flugzeug zwischen FL 160 und FL 130 in die über der Alpennordseite
lagernde Nordstaubewölkung ein. Diese war kompakt, zwischen FL 110
und FL 80 waren aber dünne wolkenfreie Schichten eingelagert.
In dieser Wolkenmasse trat mässige Vereisung auf, zwischen FL 120 und FL 80 war
sogar starke Vereisung möglich. Unterhalb FL 60 nahm die Vereisungsgefahr zusehends
ab.
Zwischen 2700 ft AMSL und 2400 ft AMSL tauchte das sinkende Flugzeug aus der Wolkenmasse
auf. In der letzten Phase des Fluges war die Sicht aus dem Cockpit nach
vorne durch tiefe Stratus-Fetzen, deren Basis zwischen 2000 ft AMSL und 1800 ft AMSL
lag, beeinträchtigt.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 53 von 152
1.7.2 Allgemeine Wetterlage
Am 23. November 2001 erstreckte sich ein Hochdruckgebiet von den Azoren bis nach
Frankreich. In der Schweiz herrschte bei starken Höhenwinden aus Nord eine Nordstaulage.
In der Nacht auf den 24. November 2001 verlagerte sich die Achse des jet stream
langsam gegen Osten und lag am 24. November knapp östlich der Schweiz. Mit dieser
Ostwärtsverlagerung des jet stream floss etwas mildere Luft gegen die Schweiz, was in
der Höhe eine Erwärmung von etwa 4 °C zur Folge hatte. Damit verbunden liess die
Wirkung des Nordstaus allmählich nach.
Die mit dem erwähnten jet stream gekoppelte Warmfront lag am 23. November über
den Britischen Inseln. Sie verlagerte sich langsam gegen Osten und drang am 24. November
2001 in den Kontinent ein. Zum Unfallzeitpunkt lag die Warmfront auf einer Linie
Stavanger-Lüttich-Orléans-La Rochelle.
Bilder der hochauflösenden amerikanischen NOAA-Satelliten im visuellen Bereich und
im Infrarotbereich zeigen am 24. November 2001 um 12:52 UTC die Nordstaubewölkung
in den zentralen und östlichen Landesteilen der Schweiz und die Bewölkung der
sich von Frankreich her nähernden Warmfront als eine zusammenhängende Wolkenmasse.
Auf dem Wetterradarbild von 21:10 UTC ist die Niederschlagszone im Nordstaugebiet
(zentrale und östliche Voralpen) jedoch noch klar getrennt von den Warmfrontniederschlägen
über den Vogesen. Die schwachen Niederschläge im Raum Zürich waren
also noch auf den abklingenden Nordstau zurückzuführen.
1.7.3 Streckenwetter Berlin – Zürich
Die synoptischen Bodenkarten zeigen, dass das Flugzeug auf der Strecke Berlin-Zürich
ungefähr parallel zu der über Westeuropa liegenden Warmfront flog. Die Bewölkung
dieser Warmfront reichte bis nach Ostdeutschland. Gemäss dem Meteosat-Infrarot-
Satellitenbild von 21:00 UTC war die Bewölkung im nördlichen Teil der Flugstrecke weniger
hochreichend als über Süddeutschland. Auf der Reiseflughöhe von FL 270 dürfte
sich das Flugzeug daher anfänglich ausserhalb von Wolken befunden haben.
Die Aussentemperatur auf FL 270 betrug im nördlichen Streckenteil -41 °C. Der Wind
auf dieser Höhe wehte aus 020 Grad mit einer Geschwindigkeit von 80 Knoten.
Im südlichen Streckenteil dürfte das Flugzeug zeitweise in den hohen Wolken der
Warmfront geflogen sein.
Die Aussentemperatur auf FL 270 betrug im südlichen Streckenabschnitt -42 °C. Der
Wind auf FL 270 wehte aus 020 Grad mit einer Geschwindigkeit von 70 Knoten.
Beim Absinken tauchte das Flugzeug zwischen FL 160 und FL 130 in die Nordstaubewölkung
ein. Auf FL 160 herrschte eine Temperatur von -17 °C, der Wind wehte
aus 010 Grad mit einer Geschwindigkeit von 40 Knoten.
Für den Flug auf FL 270 waren im deutschen Luftraum keine Warnungen aktiv. Berlin
und Frankfurt hatten AIRMET-Meldungen ausgegeben, die sich aber nur auf den bodennahen
Luftraum bezogen.
Gemäss der significant weather chart (SWC) des WAFC London gültig für 18:00 UTC
waren auf der Strecke Berlin-Zürich auf FL 270 keine fluggefährdenden Wettererscheinungen
zu erwarten, gemäss der SWC valid 00:00 UTC hingegen musste im nördlichen
Streckenabschnitt mit mässiger clear air turbulence zwischen FL 220 und FL 370 gerechnet
werden.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 54 von 152
1.7.4 Wetter im Anflugraum
1.7.4.1 Bewölkung
1.7.4.1.1 Aussagen von Flugbesatzungen
Beim Absinken tauchte das Flugzeug in die Nordstaubewölkung ein. Die Obergrenze
dieser Wolkenschicht war nicht einheitlich und schwankte zwischen FL 130 und FL 160.
Darunter war die Bewölkung kompakt bis auf eine Höhe von FL 110. Zwischen FL 110
und FL 80 waren dünne, wolkenfreie Schichten eingelagert. Unterhalb FL 80 war die
Bewölkung wieder kompakt bis zur Wolkenuntergrenze.
Die Wolkenuntergrenze in einem weiteren Umkreis um den Flughafen Zürich war nicht
einheitlich. Eine Auswertung von Pilotenaussagen ergibt folgendes Bild (gemittelte
Werte, Höhenangaben bezogen auf Flughafenhöhe):
Flughafenbereich Piste Bewölkung
Norden Abflug Piste 34 SCT 500 ft AAL
BKN 1000 ft AAL
OVC 1500 ft AAL
Anflug Piste 14 FEW 1000 ft AAL
BKN 1600 ft AAL
OVC 2000 ft AAL
Westen Abflug Piste 28 FEW 600 ft AAL
SCT 1100 ft AAL
OVC 2600 ft AAL
Osten Anflug Piste 28 FEW 500 ft AAL
BKN 1000 ft AAL
1.7.4.1.2 Messungen der Ceilometer
Ein Ceilometer ist ein Messgerät, das die Laufzeit eines vertikalen Laserstrahls misst
(Punktmessung). Damit kann die Untergrenze einer Wolke, die vertikal über dem Messgerät
liegt, bestimmt werden. Eine Angabe der Wolkenmenge aus Ceilometer-Daten ist
nur beschränkt möglich.
Eine Auswertung der Ceilometer-Messungen der letzten 7 Minuten vor dem Unfall zwischen
21:00 UTC und 21:07 UTC ergab folgendes Bild (Höhenangaben bezogen auf
Flughafenhöhe).
Flughafenbereich Ceilometer Bewölkung/Schichten
Norden Pisten 14/16 500 - 1050 ft AAL
1150 - 1350 ft AAL
Middle marker 450 - 1350 ft AAL
900 - 1150 ft AAL
Outer marker 1400 - 1750 ft AAL
Osten Bassersdorf 1300 – 3100 ft AAL
2100 – 2750 ft AAL
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 55 von 152
Der Ceilometer Bassersdorf ist auf dem Dach eines Gebäudes in Bassersdorf installiert,
ca. 1 km südlich der Anflugachse Piste 28.
1.7.4.1.3 Synthese der Aussagen von Flugbesatzungen und der Messungen der Ceilometer
Die tatsächliche Hauptwolkenuntergrenze (BKN) im Anfluggebiet der Piste 28 lag zwischen
2400 ft AMSL und 2700 ft AMSL. Diese Schicht war nicht kompakt, denn Flugbesatzungen
gaben an, dass sie zeitweise über Sicht auf die Erdoberfläche verfügt hatten.
Unter dieser Wolkenmasse befanden sich Stratus-Fetzen (FEW), deren Basis zwischen
1800 ft AMSL und 2000 ft AMSL lag. Solche Stratus-Fetzen behinderten gemäss
den Angaben der Besatzungen die Sicht aus dem Cockpit nach vorne bis etwa 2 km vor
Beginn der Piste 28.
1.7.4.2 Sicht aus dem Cockpit und meteorologische Sicht
Beim Flug knapp unterhalb der Haupt-Wolkenuntergrenze war die Sicht aus dem Cockpit
nach vorne wegen der Stratus-Fetzen stark eingeschränkt. Die anfliegenden Flugzeuge
hatten erst etwa 2 km vor Beginn der Piste 28 uneingeschränkte Sicht zu dieser
Piste.
Unterhalb der Wolkendecke betrug die meteorologische Sicht ca. 4 km, in schwachen
Niederschlägen und nahe der Wolkenuntergrenze war sie stellenweise bis gegen 2 km
reduziert.
1.7.4.3 Windprofil
Die Messwerte der Inversionsmesskette AMETIS1 und der Radiosondierungen von Payerne,
Stuttgart und München wurden räumlich und zeitlich interpoliert und ergaben
folgendes Bild der Windverhältnisse im Anflugraum:
Höhe Richtung in Grad Geschwindigkeit in kt
FL 160 010 40
FL 140 360 35
FL 120 360 30
FL 100 350 25
FL 080 340 15
6000 ft AMSL 300 15
5000 ft AMSL 270 12
4000 ft AMSL 250 12
3000 ft AMSL 220 10
2000 ft AMSL 210 06
Im vertikalen Windprofil ist mit zunehmender Höhe eine markante Drehung der Windrichtung
im Uhrzeigersinn (veering) festzustellen, was einer Warmluftadvektion entspricht
(Annäherung der Warmfront). Signifikante Turbulenz trat nicht auf.
1.7.4.4 Temperaturprofil
Die Messwerte der Inversionsmesskette AMETIS1 und der Radiosondierungen von Payerne,
Stuttgart und München wurden räumlich und zeitlich interpoliert und ergaben
folgendes Bild der Temperatur- und Feuchtigkeitsverhältnisse im Anflugraum:
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 56 von 152
Höhe Temperatur in °C Taupunkt in °C
FL 160 -17 -22
FL 140 -14 -16
FL 120 -11 -12
FL 100 -07 -08
FL 080 -05 -05
6000 ft AMSL -04 -04
5000 ft AMSL -03 -03
4000 ft AMSL -02 -02
3000 ft AMSL -01 -01
2000 ft AMSL 0 0
Die Höhe der Nullgradgrenze lag bei 2200 ft AMSL, denn Bodenzeugen, die sich auf
einer Höhe von ca. 1700 ft AMSL befanden, beobachteten als Niederschlagsart Schneefall
mit Regen vermischt, was bedeutet, dass die Nullgradgrenze etwa 500 ft höher gelegen
hat.
1.7.4.5 Vereisung
Unterhalb FL 140 trat im Anflugraum mässige Vereisung auf. Mehrere Besatzungen
stellten starke Vereisung zwischen FL 120 und FL 80 fest. Unterhalb FL 60 wurde der
Vereisungsgrad schwächer.
Erfahrungsgemäss tritt in Schichtwolken die stärkste Vereisung im Temperaturbereich
von -4 °C bis -8 °C auf. Dies entsprach im vorliegenden Fall einem Höhenbereich von
6000 ft AMSL bis 10 500 ft AMSL.
1.7.4.6 Warnungen
Zum Unfallzeitpunkt war die folgende, von MeteoSchweiz ausgegebene AIRMETMeldung
aktiv:
LSAS SWITZERLAND AIRMET 241930/242400 LSZH- SWITZERLAND FIR MOD ICE OBS
ALPS AND N OF ALPS BTN FL060 AND FL130 STNR NC =
Im Klartext bedeutet dies: Über den Alpen und nördlich der Alpen wurde zwischen FL
60 und FL 130 mässige Vereisung beobachtet; stationär; keine Änderung.
1.7.5 Wetter im Unfallgebiet
1.7.5.1 Bewölkung
Die Ebene bei Bassersdorf liegt auf einer Höhe von etwa 1500 ft AMSL, nördlich und
nordöstlich von dieser Ebene steigt das hügelige Gelände an bis zur Hochebene im Gebiet
Oberwil/Brütten, die auf einer Höhe von 1900 bis 2000 ft AMSL liegt. In diesem
Gelände liegt die Unfallstelle. Bei Südwestwind wird die anströmende Luft an diesem
Abhang leicht angehoben. Bei genügender Feuchtigkeit der Luft können sich dadurch
tiefliegende orographische Wolken bilden.
Die Hauptwolkenuntergrenze im Unfallgebiet (BKN) lag zwischen 2400 ft AMSL und
2700 ft AMSL. Am hügeligen Abhang gegen Oberwil zu bildeten sich durch Hebung der
von Südwesten her anströmenden feuchten Luft tiefe Stratus-Bänke, deren Basis zwischen
1800 ft AMSL und 2000 ft AMSL lag, das heisst, einige dieser Stratusbänke lagen
stellenweise auf Hügeln oder Abhängen auf.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 57 von 152
Darauf lassen auch Aussagen von Augenzeugen im Unfallgebiet (Ebene bei Kreuzung
Chrüzstrass) schliessen: „Flugzeug taucht plötzlich aus Wolken auf“ bwz. „Flugzeug
fliegt durch tiefhängende Wolkenwand“.
1.7.5.2 Niederschläge
Im Unfallgebiet wurden schwache Niederschläge beobachtet, und zwar in Form von
Schneefall mit Regen vermischt. Die Luftemperatur im Unfallgebiet betrug ungefähr
+0.5 °C.
1.7.5.3 Sicht
Die Sicht in der kleinen Ebene bei der Kreuzung Chrüzstrass betrug etwa 2-3 km. Etwas
höher an den Abhängen und damit näher an der Wolkenbasis war die Sicht durch
die tiefliegenden Stratus-Fetzen noch stärker beeinträchtigt.
1.7.5.4 Wind
Im Unfallgebiet wehte der Wind aus Richtung Süd mit einer Geschwindigkeit von 3-5
Knoten.
1.7.6 Wetterbedingungen auf dem Flughafen Zürich
1.7.6.1 Tagesverlauf
Auf dem Flughafen Zürich war der Himmel unter dem Einfluss des Nordstaus den ganzen
Tag über stark bewölkt oder bedeckt. Am frühen Morgen und vereinzelt wieder am
Nachmittag wurde schwacher Schneefall registriert. Ab 14:50 UTC bis zum Unfallzeitpunkt
schneite es ununterbrochen, wobei die Intensität nur schwach war. Einzig um
18:20 UTC wurde mässiger Schneefall beobachtet.
Die Haupt-Wolkenuntergrenze sank im Laufe des Abends allmählich ab und auch die
Sicht, die um die Mittagszeit noch bei ca. 20 km lag, ging auf Werte um 4 km zurück.
Der Wind war den ganzen Tag über schwach, die Windrichtung variierte zwischen
Südwest und Südost.
1.7.6.2 Wetter im Zeitpunkt des Unfalls
Wind Messpunkt Piste 14/16 aus 130° mit 2 kt
Wind Messpunkt Piste 34 aus 180° mit 3 kt
Meteorologische Sicht 3500 m
Pistensicht Piste 14A mehr als 1500 m
Pistensicht Piste 16A mehr als 1500 m
Pistensicht Piste 28A mehr als 1500 m
Niederschlag schwacher Schneefall
Wolkenbasis Kapitel 1.7.4.1.1 und 1.7.4.1.2
Lufttemperatur +0.6 °C (2 m über Grund)
Lufttemperatur Messpunkt Piste 14/16 +0.3 °C (5 cm über Grund)
+0.5 °C (5 cm über Beton)
Luftfeuchtigkeit 98 %
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 58 von 152
Luftdruck QNH 1023.9 hPa
QFE Piste 14: 973 hPa
QFE Piste 16: 973 hPa
QFE Piste 28: 972 hPa
Bodenzustand Schmelzender Schnee, den gesamten Boden
bedeckend
1.7.6.3 Flugplatzwettermeldungen METAR
Zum Unfallzeitpunkt war das folgende METAR gültig:
METAR 242050Z 16002KT 3500 –SN FEW006 BKN015 OVC022 00/M00 Q1024
8829//99 TEMPO 5000=
Im Klartext bedeutet dies, dass am 24. November 2001 um 20:50 UTC auf dem Flughafen
Zürich die folgenden Wetterbedingungen beobachtet wurden:
Wind aus 160° mit 2 kt
Meteorologische Sicht 3500 m
Niederschläge Schwacher Schneefall
Bewölkung 1-2/8 auf 600 ft AAL
5-7/8 auf 1500 ft AAL
8/8 mit Wolkenuntergrenze auf 2200 ft AAL
Temperatur 0 °C
Taupunkt zwischen -0.5 °C und -0.1 °C
Luftdruck 1024 hPa, Druck reduziert auf Meereshöhe,
berechnet mit den Werten der ICAO-Standardatmosphäre
Pistenzustandsbericht Über 50 % der Pistenflächen sind nass oder
mit Wasserpfützen bedeckt. Die Dicke dieser
Wasserablagerungen ist betrieblich nicht von
Bedeutung oder nicht messbar und es lassen
sich keine zuverlässigen Angaben über die
Bremswirkung machen.
Landewetterprognose In den zwei Stunden, die auf die Wetterbeobachtung
folgen, ist zu erwarten, dass sich die
meteorologische Sicht zeitweise auf 5000 m
ändert. Die gesamte Zeit dieser Änderung wird
voraussichtlich weniger als eine Stunde betragen.
Um 21:20 UTC trat das folgende METAR in Kraft:
METAR 242120Z 13002KT 4000 –SN FEW006 BKN015 01/M00 Q1023 8820//99
NOSIG=
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 59 von 152
1.7.6.4 Wettervorhersagen TAF
LSZH 241800Z 241904 24005KT 6000 SN FEW015 BKN025 BECMG 2224 3000
SNRA SCT008 BKN015=
1.7.7 Ausgestrahlte Wetterinformationen
1.7.7.1 VOLMET
Am 24. November 2001 um 20:20:21 UTC begann die Ausstrahlung der folgenden
VOLMET-Meldung:
THIS IS ZÜRICH MET BROADCAST MET REPORTS.
ZÜRICH 2020.
170 DEGREES 3 KNOTS.
VISIBILITY 3 THOUSAND METRES.
LIGHT SNOW.
FEW 5 HUNDRED FEET.
SCATTERED 1 THOUSAND 5 HUNDRED FEET.
BROKEN 2 THOUSAND 2 HUNDRED FEET.
TEMPERATURE 0. DEWPOINT MINUS 0.
Q.N.H 1024.
NOSIG.
GENEVA 2020.
…..
BALE 2000.
…..
Um 20:46:51 UTC begann die Ausstrahlung der nächsten VOLMET-Meldung:
THIS IS ZÜRICH MET BROADCAST MET REPORTS..
ZÜRICH 2050.
160 DEGREES 2 KNOTS.
VISIBILITY 3 THOUSAND 5 HUNDRED METRES.
LIGHT SNOW.
FEW 6 HUNDRED FEET.
BROKEN 1 THOUSAND 5 HUNDRED FEET.
OVERCAST 2 THOUSAND 2 HUNDRED FEET.
TEMPERATURE 0. DEWPOINT MINUS 0.
Q.N.H 1024.
TEMPO
VISIBILITY 5 THOUSAND METRES.
GENEVA 2020.
…..
BALE 2030.
…..
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 60 von 152
Um 20:50:19 UTC begann die Ausstrahlung der nächsten VOLMET-Meldung:
THIS IS ZÜRICH MET BROADCAST MET REPORTS.
ZÜRICH 2050.
160 DEGREES 2 KNOTS.
VISIBILITY 3 THOUSAND 5 HUNDRED METRES.
LIGHT SNOW.
FEW 6 HUNDRED FEET.
BROKEN 1 THOUSAND 5 HUNDRED FEET.
OVERCAST 2 THOUSAND 2 HUNDRED FEET.
TEMPERATURE 0. DEWPOINT MINUS 0.
Q.N.H 1024.
TEMPO
VISIBILITY 5 THOUSAND METERS.
GENEVA 2050.
…..
BALE 2030.
…..
1.7.7.2 ATIS
Die Flugbesatzung von CRX 3597 verfügte über ATIS Information KILO:
INFO KILO
LANDING RUNWAY 14 ILS APPROACH, DEPARTURE RUNWAY 34
QAM LSZH 2020 UTC 24.11.2001
190 DEG 4 KT
VIS 3000 M
LIGHT SNOW
FEW 500 FT, SCT 1500 FT, BKN 2200 FT
000/-00
QNH 1024 TWO FOUR
NOSIG
TRANSITION LEVEL 50
TAXIWAY HOTEL 1 AND TAXIWAY KILO CLOSED, VACATE RUNWAY WITH CAUTION, NEW
TAXI PROCEDURE VIA TAXIWAY DELTA AND FOXTROT
RUNWAY REPORT 1800
ALL RUNWAYS,
FULL LENGTH 60 M WET
APRON AND TAXIWAYS WET
AIRMET 1 VALID BETWEEN 1930 AND 2400
SWITZERLAND FIR MODERATE ICING OBSERVED ALPS AND NORTH OF ALPS BETWEEN
FLIGHT LEVEL 60 AND FLIGHT LEVEL 130. STATIONARY NO CHANGE
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 61 von 152
Dann folgten folgende ATIS-Meldungen:
INFO LIMA
LANDING RUNWAY 28 VOR DME STANDARD APPROACH, DEPARTURE RUNWAY 34
QAM LSZH 2020 UTC 24.11.2001
190 DEG 4 KT
VIS 3000 M
LIGHT SNOW
FEW 500 FT, SCT 1500 FT, BKN 2200 FT
000/-00
QNH 1024 TWO FOUR
NOSIG
TRANSITION LEVEL 50
TAXIWAY HOTEL 1 AND TAXIWAY KILO CLOSED, VACATE RUNWAY WITH CAUTION, NEW
TAXI PROCEDURE VIA TAXIWAY DELTA AND FOXTROT
RUNWAY REPORT 1800
ALL RUNWAYS,
FULL LENGTH 60 M WET
APRON AND TAXIWAYS WET
AIRMET 1 VALID BETWEEN 1930 AND 2400
SWITZERLAND FIR MODERATE ICING OBSERVED ALPS AND NORTH OF ALPS BETWEEN
FLIGHT LEVEL 60 AND FLIGHT LEVEL 130. STATIONARY NO CHANGE
INFO MIKE
LANDING RUNWAY 28 VOR DME STANDARD APPROACH, DEPARTURE RUNWAY 34
QAM LSZH 2020 UTC 24.11.2001
190 DEG 4 KT
VIS 3000 M
LIGHT SNOW
FEW 500 FT, SCT 1500 FT, BKN 2200 FT
000/-00
QNH 1024 TWO FOUR
NOSIG
TRANSITION LEVEL 50
TAXIWAY HOTEL 1 AND TAXIWAY KILO CLOSED, VACATE RUNWAY WITH CAUTION, NEW
TAXI PROCEDURE VIA TAXIWAY DELTA AND FOXTROT
RUNWAY REPORT 2040
ALL RUNWAYS,
FULL LENGTH 60 M WET
APRON AND TAXIWAYS WET
AIRMET 1 VALID BETWEEN 1930 AND 2400
SWITZERLAND FIR MODERATE ICING OBSERVED ALPS AND NORTH OF ALPS BETWEEN
FLIGHT LEVEL 60 AND FLIGHT LEVEL 130. STATIONARY NO CHANGE
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 62 von 152
INFO NOVEMBER
LANDING RUNWAY 28 VOR DME STANDARD APPROACH, DEPARTURE RUNWAY 34
QAM LSZH 2050 UTC 24.11.2001
200 DEG 4 KT
VIS 3500 M
LIGHT SNOW
FEW 600 FT, BKN 1500 FT, OVC 2200 FT
000/-00
QNH 1024 TWO FOUR
TEMPO VIS 5000 M
TRANSITION LEVEL 50
TAXIWAY HOTEL 1 AND TAXIWAY KILO CLOSED, VACATE RUNWAY WITH CAUTION, NEW
TAXI PROCEDURE VIA TAXIWAY DELTA AND FOXTROT
RUNWAY REPORT 2040
ALL RUNWAYS,
FULL LENGTH 60 M WET
APRON AND TAXIWAYS WET
AIRMET 1 VALID BETWEEN 1930 AND 2400
SWITZERLAND FIR MODERATE ICING OBSERVED ALPS AND NORTH OF ALPS BETWEEN
FLIGHT LEVEL 60 AND FLIGHT LEVEL 130. STATIONARY NO CHANGE
Zum Unfallzeitpunkt wurde die folgende ATIS-Information ausgestrahlt:
INFO OSCAR
LANDING RUNWAY 28 VOR DME STANDARD APPROACH, DEPARTURE RUNWAY 34
QAM LSZH 2050 UTC 24.11.2001
200 DEG 4 KT
VIS 3500 M
LIGHT SNOW
FEW 600 FT, BKN 1500 FT, OVC 2200 FT
000/-00
QNH 1024 TWO FOUR
TEMPO VIS 5000 M
TRANSITION LEVEL 50
TAXIWAY HOTEL 1 AND TAXIWAY KILO CLOSED, VACATE RUNWAY WITH CAUTION, NEW
TAXI PROCEDURE VIA TAXIWAY DELTA AND FOXTROT
RUNWAY REPORT 2040
ALL RUNWAYS,
FULL LENGTH 60 M WET
APRON AND TAXIWAYS WET
AIRMET 1 VALID BETWEEN 1930 AND 2400
SWITZERLAND FIR MODERATE ICING OBSERVED ALPS AND NORTH OF ALPS BETWEEN
FLIGHT LEVEL 60 AND FLIGHT LEVEL 130. STATIONARY NO CHANGE
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 63 von 152
1.7.8 Wetterausstrahlungen zwischen 20:00 und 21:00 UTC
Beim ersten Aufruf der CRX 3597 bei APE um 20:48:22 UTC meldete der Pilot, er hätte
Kenntnis von der ATIS-Information „KILO“.
In der Folge wechselten die ATIS-Ausstrahlungen bis zur Absturzzeit um 21:07 UTC
mehrmals, ohne dass die Piloten auf die Änderungen bezüglich Sicht und Wolkenuntergrenze
hingewiesen wurden.
Beginn Ausstrahlung Automatic Terminal Information Service
20:40:10 UTC LIMA: Met Report Zürich 20:20 UTC, Wechsel
von landing runway 14 ILS approach zu landing
runway 28 VOR DME standard approach
20:44:56 UTC MIKE: Met Report Zürich 20:20 UTC, neuer
runway report Nr. 32 von 20:40 UTC.
20:50:00 UTC NOVEMBER: Met Report Zürich 20:50 UTC,
neue Beobachtungszeit und verbesserte meteorologische
Sicht von 3500 m. Absinken der
Hauptwolkenuntergrenze auf 5-7/8 bei 1500 ft
AAL.
20:50:16 UTC OSKAR: Met Report Zürich 20:50 UTC, neuer
Kennbuchstabe aufgrund einer Umschaltung
zwischen zwei Computerservern.
1.7.9 Astronomische Angaben
1.7.9.1 Sonnenstand
Azimuth 305° 42’ 43“
Höhe -53° 12’ 08”
1.7.9.2 Mondstand
Azimuth 217° 54’ 11“
Höhe +26° 58’ 57”
Phase Zunehmend
Alter 0.68 (0 = Neumond, 1 = Vollmond)
1.7.10 Pistensichtweite und meteorologische Sicht
1.7.10.1 Pistensichtweite
Gemäss ICAO document 4444 ist die Pistensichtweite (runway visual range – RVR) wie
folgt definiert: „The range over which the pilot of an aircraft on the centre line of a
runway can see the runway surface markings or the lights delineating the runway or
identifying its centre line“. Das heisst, die Pistensichtweite ist im Wesentlichen die maximale
Distanz in Pistenrichtung, in der die Pistenlampen noch erkannt werden können.
Sie wird mit sogenannten Transmissometern (TMM) gemessen. Mit Kurzbasis-TMM
(15 m Messdistanz) können Werte im Bereich von 50 m bis ca. 800 m gemessen werden,
mit den Langbasis-TMM (50 m Messdistanz) werden RVR-Werte zwischen ca.
100 m und 2000 m bestimmt, wobei im unteren Messbereich die Messung etwas ungeSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 64 von 152
nauer ist. Für Pisten mit ILS-Anflügen sind Kurz- und Langbasis-TMM notwendig. An
den Pisten 14 und 16 des Flughafens Zürich sind daher beide Typen installiert. An Piste
28 waren zum Zeitpunkt des Unfalles nur Langbasis-TMM installiert.
In den Wettermeldungen werden RVR-Werte von 50 m bis 1500 m gemeldet. Liegt die
Pistensichtweite unter 50 m, wird M0050 gemeldet, liegt sie über 1500 m, wird dies mit
P1500 bezeichnet. Somit werden in VOLMET (METAR) und ATIS (QAM) keine RVRWerte
über 1500 m gemeldet.
1.7.10.2 Meteorologische Sicht
Die meteorologische Sicht (neu Bodensicht) ist als die maximale Distanz definiert, bei
der ein Gegenstand von entsprechender Grösse noch erkannt werden kann. Die meteorologische
Sicht wird nur in der horizontalen Ebene bestimmt. Ist die Sicht nicht in allen
Richtungen gleich gross, wird die kleinste Sicht gemeldet. Die Schweiz und weitere
Länder kennen in dieser Hinsicht folgende Ausnahme: Ist die meteorologische Sicht
nicht in allen Richtungen gleich gross, wird die vorherrschende Sicht gemeldet. Unter
vorherrschender Sicht versteht man jenen Wert, der mindestens im halben Umkreis um
den Beobachtungsstandort erreicht oder überschritten wird, wobei sich der halbe Umkreis
aus verschiedenen getrennten Sektoren zusammensetzen kann.
1.7.10.3 Beziehung zwischen meteorologischer Sicht und Pistensichtweite
Eine Lichtquelle kann auf eine grössere Distanz erkannt werden als ein unbeleuchteter
Gegenstand. Der RVR-Wert ist daher in der Nacht ungefähr 3 bis 4 Mal höher als die
meteorologische Sicht. Bei Tage bewirkt die Sonne einen Blendeffekt im Nebel, d.h. der
RVR-Wert ist nur noch ungefähr doppelt so gross wie die meteorologische Sicht.
1.7.10.4 Wolkenbeobachtung
Auf Flughäfen mit precision approach runways sollen nach den Normen der Internationalen
Zivilluftfahrtorganisation (ICAO) Wolkenbeobachtungen in QAM-Meldungen (ATIS)
für die middle marker position des Instrumentenlandesystems repräsentativ sein.
Wolkenbeobachtungen in METAR-Meldungen (VOLMET) sollen für das ganze Flughafengebiet
und die unmittelbare Umgebung repräsentativ sein.
Nach diesen Bestimmungen sind in QAM-Meldungen (ATIS) des Flughafens Zürich die
Bewölkungsverhältnisse in der ehemaligen middle marker position der Piste 16 anzugeben.
In den METAR-Meldungen sind die Bewölkungsverhältnisse zusammengefasst
für das ganze Flughafengebiet und die unmittelbare Umgebung anzugeben.
1.8 Navigationshilfen
1.8.1 Generelle Einschränkungen
Auf den Anflugkarten des Flughafens Zürich steht bezüglich des UKW-Drehfunkfeuers
(VHF omnidirectional radio range – VOR) folgender Vermerk:
„KLO VOR partially unreliable below 12 000 ft“ – KLO VOR teilweise unzuverlässig unter
einer Höhe von 12 000 ft AMSL.
Im Rahmen der Versetzung des VOR/DME KLO aufgrund des Neubaus des Midfield
Terminals wurden zwei Überdeckungsdiagramme für den neuen Standort des VOR angefertigt.
Die Auswertung dieser beiden Diagramme hat gezeigt, dass das Signal unter
12 000 ft teilweise gestört ist.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 65 von 152
Die An- und Abflugwege sind von diesen topografisch bedingten Überdeckungsmängeln
nicht betroffen, was durch Messflüge nachgewiesen wurde. Es sind auch keine
Vorfälle oder Meldungen an die Flugsicherungsstellen bekannt, welche sich auf Unregelmässigkeiten
des VOR KLO beziehen könnten.
Aufgrund dieser Tatsachen wurde anlässlich eines Treffens mit der IFR procedure
group (IPG) Zürich im Jahre 1999 beschlossen, die oben erwähnte Einschränkung zu
publizieren, die auch vom BAZL akzeptiert wurde. Ein detaillierter Bericht wurde seinerzeit
von skyguide erstellt.
1.8.2 Navigationshilfen für den Standard VOR/DME Approach 28
Beim standard VOR/DME approach 28 handelt es sich um einen non-precision approach.
Als Navigationshilfen werden die DVOR/DME Kloten (KLO) und DVOR/DME Zurich
East (ZUE) verwendet. Bei diesen Navigationsanlagen handelt es sich um Drehfunkfeuer,
welche nach dem Dopplerprinzip funktionieren. Beide sind mit einer Entfernungsmessanlage
(DME) ausgerüstet.
Navigationshilfe DVOR/DME KLO
Geographische Lage 47° 27’ 25.73“ N, 008° 32’ 44.14“ E
Höhe über Meer 1414 ft AMSL
Überdeckungsbereich (DOC) 50 NM/25 000 ft
Frequenzen DVOR 114.85 MHz, DME Kanal 95 Y
Betriebsdauer 24 Stunden
Navigationshilfe DVOR/DME ZUE
Geographische Lage 47° 35’ 31.82“ N, 008° 49’ 03.55“ E
Höhe über Meer 1730 ft AMSL
Überdeckungsbereich (DOC) 80 NM/50 000 ft
Frequenzen DVOR 110.05 MHz, DME Kanal 37 Y
Betriebsdauer 24 Stunden
Die Sendeanlagen der Stationen DVOR/DME KLO und DVOR/DME ZUE befanden sich
am 24. November 2001 von 20:45 UTC bis 21:15 UTC im Normalbetrieb und standen
den Betriebsdiensten uneingeschränkt zur Verfügung.
Am 26. November 2001 führte ein Staatsluftfahrzeug der Direction générale de l’aviation
civile (DGAC) von Frankreich im Auftrag des BFU mehrere Kontrollflüge durch. Dabei
wurden die Signalqualität der Anflughilfen für den standard VOR/DME approach 28
überprüft. Die aufgezeichneten Werte lagen innerhalb der betrieblichen Toleranzen und
die DGAC kam deshalb zu folgendem Schluss:
"Aux vues des enregistrements effectués par l'avion du contrôle en vol de la DGAC
(ATR 42 F-GFJH), l'approche VOR/DME enregistrée depuis ZUE jusqu'au seuil est dans
les tolérances opérationnelles".
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 66 von 152
1.8.3 Weitere Navigationshilfen
Anlage Typ und Hersteller Inbetriebnahme
LOC ILS 14 ZRH LOC 411 von Thales ATM 1999
GP ILS 14 ZRH GS 412 von Thales ATM 1999
DME ILS 14 ZRH FSD 40 von Thales ATM 1999
LOC ILS 16 ZRH S 4000 von Thales ATM 1990
GP ILS 16 ZRH S 4000 von Thales ATM 1990
DME ILS 16 ZRH FSD 10 von Thales ATM 1990
1.8.4 Radarüberwachung von Instrumentenanflügen
Die standard VOR/DME approaches 28 werden nicht mittels Radarführung, sondern in
Eigennavigation geflogen.
Gemäss Arbeitsplatzdokumentation ist es Aufgabe des FINAL-Flugverkehrsleiters (FVL),
den von der Besatzung geflogenen Flugweg zu überwachen und nötigenfalls Kurskorrekturen
anzuordnen (vectoring).
Es wurde festgestellt, dass der zum Unfallzeitpunkt zuständige APW-FVL die CRX 3597
ab einer Distanz von 9 NM von der Pistenschwelle 28 im Rahmen einer Radarüberwachung
(radar monitoring) betreute. Dabei gab der APW-FVL an, dass er die Maschine
auf seinem Radarbildschirm sah, als sie sich in einer Distanz von 9 NM, 6 NM und ungefähr
4 NM zur Pistenschwelle befand. Die Höhe derselben habe er lediglich bei ca.
6 NM bewusst wahrgenommen, als er auf dem Radarbildschirm eine Höhe von ungefähr
3600 ft feststellte.
Der FVL sagte aus: „Später machte ich keine Höhenkontrolle mehr. Ich überwachte lediglich
den weiteren Flugweg. Der Grund, warum ich keine bewussten Höhenchecks
vornahm war, dass sich das Flugzeug in Eigennavigation befand und in diesem Status
meiner Ansicht nach für mich keine Notwendigkeit bestand, im Rahmen eines radar
monitoring solche Höhenchecks durchzuführen.“
Das Verständnis der befragten FVL bezüglich Umfang und praktischer Durchführung
der Radarüberwachung während eines standard VOR/DME approach 28 war unterschiedlich:
• Ein FVL sagte aus, dass er bei einem radar monitoring in der Regel lediglich den
Flugweg, nicht aber die Höhe kontinuierlich überwache. Die Überwachung der Flughöhe
verwende er zur Staffelung gegenüber einem anderen Flugzeug.
• Ein anderer FVL sagte aus, dass beim radar monitoring die Ausführung der erteilten
Anweisungen an ein Flugzeug überwacht werden müsse. Diese Überwachung
erstrecke sich nach seinem Verständnis „ungefähr bis zum Minimum eines standard
VOR/DME approach 28 (ca. 3 NM DME)“.
Nachdem am 14. November 1990 ein Verkehrsflugzeug der Alitalia mit dem Stadlerberg
kollidiert war, wurde vom BFU eine Sicherheitsempfehlung erlassen (vgl.
1.18.3.2), mit der u.a. die Einführung eines minimum safe altitude warning system
(MSAW) empfohlen wurde. Beim MSAW handelt es sich um ein Sicherheitssystem, das
bei Unterschreitung vordefinierter Mindesthöhen in der Flugverkehrsleitung einen optischen
und akustischen Alarm auslöst.
In der Folge wurden die Pisten 14 und 16 mit einem MSAW ausgerüstet, der Anflugsektor
der Piste 28 hingegen nicht.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 67 von 152
1.9 Kommunikation
1.9.1 Beteiligte Flugverkehrleitstellen
1.9.1.1 Allgemeines
Flugverkehrsleitstelle Abkürzung Frequenz
Approach control east APE 120.750 MHz
Approach control west APW 118.000 MHz
Aerodrome control (tower) ADC 118.100 MHz
Ground control GRO 121.900 MHz
Im TWR/APP Zürich wurde kein systematischer Arbeitsplatznachweis geführt. Das
heisst, Arbeitsplatzübernahmen wurden nicht dokumentiert. Personalwechsel an Arbeitsplätzen
wurden deshalb im Rahmen der Untersuchung aufgrund des voice transcript
und von Aussagen nachvollzogen.
1.9.1.2 Personaleinsatz in der Anflugleitstelle
Als die CRX 3597 um 20:48:22 UTC mit der Anflugleitstelle Zürich Kontakt aufnahm,
befanden sich 2 FVL in der Anflugleitstelle. Sie hielten die Positionen approach west
(APW) und approach east (APE) besetzt.
Auf den Frequenzen der beiden FVL befanden sich insgesamt 3 Flugzeuge. Zwei Maschinen
führte der FVL am APW und die CRX 3597 wurde vom FVL am APE geleitet.
Diese zwei FVL liessen nach gegenseitiger Absprache die beiden Flugzeuge von Westen
zuerst anfliegen, um danach die CRX 3597 als drittes Flugzeug für den Anflug einzureihen.
Die CRX 3597 war das letzte Flugzeug, das der FVL am APE zu führen hatte. Nach Absprache
mit seinem Kollegen am APW schloss er um 21:04 UTC seinen Arbeitsplatz und
begab sich in der Absicht, dort einen Kollegen abzulösen, in die Turmkanzel.
Gemäss Sektorbelegungsplan der skyguide hätten zum Zeitpunkt des Unfalles (21:07
UTC) in der Anflugleitstelle noch 4 Arbeitspositionen besetzt sein müssen. Tatsächlich
war eine Arbeitsposition besetzt.
1.9.1.3 Personaleinsatz in der Platzverkehrsleitstelle
Der FVL, welcher der CRX 3597 die Landebewilligung erteilte, hatte um 21:06 UTC den
Arbeitsplatz ADC 1 eingenommen, nachdem er bis 21:04 UTC am Sektor APE gearbeitet
und die CRX 3597 zum Anflug auf die Piste 28 geführt hatte.
Der Dienstleiter (DL) hatte nach der Landung des ersten (von drei) Flugzeugen, die
sich auf dem standard VOR/DME approach 28 befanden, entschieden, die Besatzung in
der Turmkanzel auf 2 FVL zu reduzieren. Er übergab die Dienstleitung um 21:03 UTC
dem FVL am Arbeitsplatz GRO und verliess danach die Turmkanzel, um sich nach einem
kurzen Aufenthalt im Büro auf den Heimweg zu begeben.
Der Bodenverkehrsleiter (GRO), der ab 21:03 UTC gleichzeitig die Funktion des Dienstleiters
(DL) ausübte, hatte keine Dienstleiterausbildung erhalten. Gemäss seiner Aussage
sei er sich bei der Übernahme der Dienstleitung über die Rechte und Pflichten der
Dienstleiterfunktion im Klaren gewesen. Er habe die Dienstleiterfunktion schon öfters
übernommen – und zwar auch während des Tages, mit entsprechendem Verkehrsaufkommen.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 68 von 152
Gemäss Sektorbelegungsplan der skyguide hätten zum Zeitpunkt des Unfalles in der
Platzverkehrsleitstelle noch 4 Arbeitspositionen besetzt sein müssen. Tatsächlich waren
2 Arbeitspositionen besetzt. Die Dienstleiterposition war gemäss Sektorbelegungsplan
bis 22:00 UTC ausgewiesen.
1.9.2 Gesprächsaufzeichnungen
Folgende Daten im TWR und APP werden laufend mit einem digital storage system
aufgezeichnet und auf digital data storage (DDS) gespeichert:
• Sämtliche benutzten VHF-Funkkanäle; im APE, APW und im ADC ist zusätzlich je ein
Aufzeichnungsgerät für Kurzzeitaufnahmen installiert
• Sämtliche Drahtverbindungen zwischen Arbeitsplätzen
• Sämtliche Telefongespräche an den Arbeitsplätzen
• Sprechfunkverbindungen zur Kommunikation mit Polizei und Rettungskräften
Die Verständigungsqualität war gut und die Aufzeichnung lückenlos.
Die Gespräche im Radarraum und in der Turmkanzel werden nicht durch ein Raummikrofon
aufgenommen.
1.9.3 Kommunikationsanlagen
Die Betriebsaufzeichnungen TWR und APP und das log book des system management
(SYMA) wiesen zum Unfallzeitpunkt keine Ausfälle oder Mängel an den Kommunikationsanlagen
der Flugsicherung aus. Das Gleiche galt auch für alle internen Verbindungen
(Intercom, Telefon) der Flugverkehrsleitung.
1.10 Angaben zum Flughafen
1.10.1 Allgemeines
Der Flughafen Zürich liegt im Nordosten der Schweiz. Im Jahre 2001 wurde von der
Flugsicherung skyguide gesamthaft ein Verkehrsvolumen von rund 297 000 An- und
Abflügen nach Instrumentenflugregeln (IFR) bewirtschaftet.
Zum Unfallzeitpunkt war ein umfangreiches Bauprogramm im Gang, dessen Kernstück
das im Pistendreieck liegende dock midfield ist.
Die Pisten des Flughafens Zürich weisen folgende Abmessungen auf:
Pistenbezeichnung Abmessungen Höhe der Pistenschwellen
16/34 3700 x 60 m 1390/1386 ft AMSL
14/32 3300 x 60 m 1402/1402 ft AMSL
10/28 2500 x 60 m 1391/1416 ft AMSL
Die Bezugshöhe des Flughafens beträgt 1416 ft AMSL und als Bezugstemperatur sind
24.0 °C festgelegt.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 69 von 152
1.10.2 Pistenausrüstung
Der Flughafen zeichnet sich durch ein System von drei Pisten aus, wobei sich zwei dieser
Pisten (16 und 28) im Bezugspunkt (airport reference point) kreuzen. Die Anflugschneisen
zweier weiterer Pisten (16 und 14) schneiden sich ungefähr 850 Meter
nordwestlich der Pistenschwelle 14. Die Pisten 16 und 14 sind mit einem Instrumentenlandesystem
(ILS) der Kategorie CAT III ausgerüstet und eignen sich somit für precision
approaches. Die Piste 28 erlaubt auf der Basis des VOR/DME KLO non precision
approaches. Die Anflugsektoren der Pisten 14 und 16 sind mit einem minimum safe altitude
warning system (MSAW) ausgestattet. Dieses System löst in der Flugverkehrsleitung
einen optischen und akustischen Alarm aus, wenn Luftfahrzeuge definierte Mindesthöhen
unterschreiten. Im Anflugsektor der Piste 28 ist kein MSAW installiert.
1.10.3 Betriebskonzept
Zum Zeitpunkt des Unfalls spielten bei der Festlegung der Start- und Landepisten die
für den Flughafen Zürich geltenden Lärmminderungsverfahren eine bestimmende Rolle,
und zwar vor allem für Starts vor 07:00 und nach 21:00 Lokalzeit (local time – LT). Die
Beziehung zwischen schweizerischer Lokalzeit im Winter und UTC lautet: LT = UTC + 1
h. Am 19. Oktober 2001 war zudem das Betriebskonzept bezüglich Landungen vor
06:00 LT und nach 22:00 LT geändert worden. Die Grundlage hierzu bildeten die vorgezogenen
Massnahmen betreffend eines Staatsvertrages zwischen der Schweiz und
Deutschland, der sich im Herbst 2001 im Ratifizierungsverfahren befand.
Somit galt für den Flughafen Zürich folgendes Betriebskonzept bezüglich der Pistenbenutzung:
Zeit (LT)/ Windverhältnisse
Für die Benutzung vorgesehene
Pistenrichtungen
Einschränkungen/ Bemerkungen
05:30 – 06:00 Uhr Landung: standard
VOR/DME approach auf
Piste 28
Start: keine
Minima gemäss AIP. Falls
die Minima nicht erreicht
wurden, konnten für die
Landung Piste 16 oder 14
verwendet werden.
06:00 – 07:00 Uhr Landung: Piste 16 für alle
Flugzeuge
Start: Piste 34 für Strahlflugzeuge
Piste 28 für Propellerflugzeuge
Zwischen 06:30 und 07:00
waren vier Starts von
Strahlflugzeugen auf Piste
28 zugelassen.
07:00 – 22:00 Uhr Landung: Piste 14 für alle
Flugzeuge
07:00 – 21:00 Uhr Start: Piste 28 für alle Flugzeuge
Start auf Piste 16 möglich,
falls Start auf Piste 28 wegen
Leistungseinschränkungen
unmöglich ist.
07:00 – 08:30 Uhr
09:45 – 13:00 Uhr
18:30 – 21:00 Uhr
Start: Piste 16 für alle Flugzeuge
gestattet
Möglichkeit zur Kapazitätssteigerung
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 70 von 152
Nach 21:00 Uhr Start: Piste 34 für Strahlflugzeuge
Start: Piste 28 nur für Propellerflugzeuge
Nach 22:00 Uhr Landung: standard
VOR/DME approach auf
Piste 28
Für Flugzeuge der Kategorie
heavy und B757
konnte die Piste 16 verwendet
werden
Minima gemäss AIP. Falls
die Minima nicht erreicht
wurden, konnten für die
Landung Piste 16 oder 14
verwendet werden.
Westwindlage Start: Piste 32
Landung: Piste 28
Bisenlage Start: Piste 10
Landung: Piste 14
Start auf Piste 16 möglich,
falls Start auf Piste 10 wegen
Leistungseinschränkungen
unmöglich ist.
1.10.4 Rettungs-und Feuerwehrdienste
Der Flughafen Zürich war mit Feuerbekämpfungsmitteln der Kategorie 9 ausgerüstet.
Die Berufsfeuerwehr des Flughafens leistete während des Flugbetriebes permanent Bereitschaftsdienst.
Im Ereignisfall waren die Einsatzkräfte über entsprechende Kommunikationsmittel
in ständigem Kontakt mit dem Kontrollturm und mit der Polizei.
Die Auflagen der ICAO sehen vor, dass alle zwei Jahre obligatorische Notfallübungen
auf dem Flughafen Zürich durchgeführt werden sollen. Die letzte Übung fand am
27. Oktober 2000 unter dem Namen EVAC 2000 statt. Vertreter des Bundesamtes für
Zivilluftfahrt BAZL waren anwesend und beanstandeten nichts.
In der Umgebung verfügten die umliegenden Gemeinden über kommunale Feuerwehren
im Milizsystem.
Auf dem Flughafen Zürich stand rund um die Uhr eine Flughafensanität mit Notfallfahrzeugen
und dem entsprechenden Fachpersonal zur Verfügung.
Die nächste Einsatzbasis der Schweizerischen Rettungsflugwacht REGA lag im Unfallzeitpunkt
auf dem Kinderspital Zürich.
1.11 Flugschreiber
1.11.1 Digital Flight Data Recorder
1.11.1.1 Technische Beschreibung
Das flight recorder system von Allied Signal bestand aus einer flight data acquisition
unit (FDAU), einem digital flight data recorder (DFDR), einem flight data entry panel
(FDEP) und einem triaxial accelerometer.
In der FDAU werden Daten von verschiedenen Flugzeugsystemen und Sensoren nach
einem vorgegebenen Programm abgefragt und dann sequenziell an den digital flight
data recorder weitergeleitet. Die Abtastrate wurde auf Grund der Veränderungsrate der
einzelnen Parameter definiert. Die Normalbeschleunigung wird zum Beispiel acht Mal
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 71 von 152
pro Sekunde erfasst (sampled). Alle Daten, seien sie analog oder digital, werden in der
FDAU in ein einheitliches Format umgewandelt und im DFDR in einer bestimmten Reihenfolge
digital gespeichert. Für eine spätere Auswertung müssen die Daten durch einen
externen Rechner in sogenannte engineering units (heading in degrees, altitude in
feet usw.) zurückverwandelt werden. Die FDAU als data concentrator war im avionics
rack untergebracht.
Der DFDR ist im Heck des Flugzeuges installiert. Er speichert die von der FDAU aufbereiteten
Daten in einer Speichereinheit (memory unit), welche sich in einer schlag- und
feuersicheren Kapsel befindet, um auch die Wirkung eines Flugzeugabsturzes überstehen
zu können. Um den DFDR allenfalls unter Wasser auffinden zu können, ist dieser
mit einem sogenannten underwater locator beacon (ULB) ausgerüstet. Die memory
unit kann 64 Dateneinheiten, sog. words, während rund 50 Stunden aufzeichnen.
Wenn das memory voll ist, werden die ältesten Daten automatisch überschrieben.
Das flight data entry panel (FDEP) ist auf dem center pedestal installiert. Es enthält
Warnlampen, welche über gewisse Fehlfunktionen im DFDR oder in der FDAU warnen.
Ein Schalter erlaubt das Einschalten des DFDR für Testzwecke am Boden, und ein weiterer
push button erlaubt das Markieren eines bestimmten Ereignisses (event button).
Das triaxial accelerometer befindet sich in der Mitte des Flugzeugrumpfes. Es registriert
die Beschleunigungen entlang den drei Flugzeugachsen.
Mehrere Potentiometer werden als Sensoren für Steuerausschläge eingesetzt. Daneben
sind Positionsschalter für die Erfassung von „diskreten Zuständen“ (z.B. gear down)
vorhanden.
Der digital flight data recorder beginnt zu arbeiten, wenn eines der Triebwerke läuft
und die Parkbremse gelöst wird.
Der DFDR wird aus dem essential bus ESS 115 VAC gespiesen, und die FDAU sowie
das accelerometer beziehen ihren Strom aus dem essential bus ESS 28 VDC.
1.11.1.2 Unterhalt und Überwachung
Das flight recorder system verfügte über ein integriertes monitoring system, welches
sowohl beim Aufstarten als auch während des Betriebes die DFDR-Funktionen überwachte.
Der DFDR wurde letztmals anlässlich des C2 check am 3. Juni 2000 kalibriert. Die Details
zu diesem Prozessablauf werden im Kapitel 1.17.1.11 beschrieben.
1.11.2 Cockpit Voice Recorder
1.11.2.1 Technische Beschreibung
Die Audiosignale, welche über die VHF-Funkgeräte gesendet beziehungsweise empfangen
werden, sowie die im Cockpit über das intercom geführten Gespräche werden
automatisch durch den cockpit voice recorder (CVR) aufgezeichnet. Zusätzlich werden
Stimmen und Geräusche im Cockpit durch ein cockpit area microphone (CAM) aufgenommen.
Das Flugzeug HB-IXM war mit einem solid state cockpit voice recorder (SSCVR) von
Allied Signal ausgerüstet. Im Gegensatz zu herkömmlichen cockpit voice recordern erfolgt
die Aufzeichnung beim SSCVR nicht auf einem Magnetband, sondern digital in
einem elektronischen Speicher (memory). Die maximale Aufzeichnungsdauer dieses
Gerätes beträgt 30 Minuten.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 72 von 152
Die Speichereinheit (memory unit) befindet sich im SSCVR in einer schock- und feuersicheren
Kapsel, um auch die Wirkungen eines Flugzeugabsturzes überstehen zu können.
Um den SSCVR allenfalls unter Wasser auffinden zu können, ist dieser mit einem
sogenannten underwater locator beacon (ULB) ausgerüstet.
Die Aufzeichnungen können nach der Landung durch die Besatzung gelöscht werden,
sobald mindestens eine Flugzeugtüre geöffnet wird.
Das korrekte Funktionieren des SSCVR kann vor dem Flug mittels einer intergrierten
Testfunktion überprüft werden. Ausgelöst wird der Test mit einem pushbutton auf der
CVR control unit.
Der SSCVR wird vom essential bus ESS 115 VAC mit Strom versorgt.
Der SSCVR zeichnet vier Audiokanäle (channels) auf:
• channel 1 observer audio
• channel 2 first officer audio
• channel 3 captain audio
• channel 4 cockpit area microphone (CAM)
Für Synchronisationszwecke wird auf dem channel 1 alle vier Sekunden ein Impulssignal
aufgezeichnet.
Das gesamte Aufzeichnungssystem besteht aus drei Komponenten. Der solid state
cockpit voice recorder ist im Heck des Flugzeuges eingebaut. Die control unit befindet
sich im Cockpit auf dem linken Seitenpanel und das cockpit area microphone ist unter
dem glareshield eingebaut.
1.11.2.2 Unterhalt
Da ein SSCVR keine beweglichen Teile aufweist, bedarf er keiner periodischen Kontrollen
in der Werkstatt. Einzig die logischen Funktionen (ein/aus, memory löschen) und
die Aufnahmequalität werden am Flugzeug periodisch überprüft.
1.11.3 Auslesen der Flugdatenschreiber
Der DFDR und der SSCVR wurden noch in der Unfallnacht aus dem Flugzeugwrack
ausgebaut. Die Flugdatenschreiber befanden sich in gutem Zustand.
1.11.3.1 Qualität der CVR-Aufzeichnung
Die Verständigungsqualität war gut und die Aufzeichnung lückenlos.
1.11.3.2 Qualität der FDR-Aufzeichnung
Die DFDR-Aufzeichnungen der aileron, elevator und rudder waren nicht auswertbar.
Die Aufzeichnungen des power lever angles (PLA) waren teilweise erratisch.
Die übrigen Parameter waren qualitativ gut und die Aufzeichnung lückenlos.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 73 von 152
1.12 Angaben über den Aufprall, das Wrack und die Unfallstelle
1.12.1 Aufprall
Unmittelbar vor der ersten Baumberührung flog die Maschine mit einem Steuerkurs
von 274° und ihre Geschwindigkeit über Grund betrug ungefähr 118 kt, entsprechend
ca. 60 m/s. In dieser Phase betrug die Querneigung des Flugzeugs annähernd null. Im
Zuge des Durchstartversuches und während der ersten Baumberührung nahm einerseits
die Triebwerkleistung zu und die Längsneigung veränderte sich von 2° attitude
nose down (AND) auf 5° attitude nose up (ANU). Die Sinkrate verringerte sich von ursprünglich
1200 ft/min auf annähernd 0 ft/min. Die HB-IXM befand sich in Landekonfiguration,
d.h. das Fahrwerk und die Landeklappen waren ausgefahren. Im Unfallzeitpunkt
befanden sich 3150 kg Treibstoff an Bord und die aktuelle Masse betrug rund
32 400 kg.
Die Aufprallzone lag in einem Waldgebiet, ungefähr einen Kilometer nördlich von Bassersdorf,
unterhalb einer Kuppe. Die Endlage des Wracks befand sich etwa 250 m
westlich des Punktes, bei dem die Maschine erstmals Bäume berührt hatte, am Fusse
des Hügels.
Die Kollision mit den ersten Bäumen führte zu einer raschen Verzögerung des Flugzeuges,
obwohl zu diesem Zeitpunkt eine leichte Zunahme der Triebwerkleistung erfolgte.
In dieser Phase wurden Teile der Treibstoffanlage so beschädigt, dass Flugpetrol ins
Freie gelangte.
Ungefähr 200 m weiter auf dem Flugweg schlugen die beiden rechten Triebwerke und
der rechte Flügel am Boden auf. Als Folge dieser ersten Bodenberührung bäumte sich
die Flugzeugzelle auf und schlingerte. Dabei zerbrach das Flugzeug in mehrere Teile.
1.12.2 Trümmerfeld
Das ebene Trümmerfeld befand sich in einem mit massiven Fichten und Buchen besetzten
Waldstück direkt am Fusse des Abhanges, wo die ersten Baumberührungen
stattgefunden hatten. In ihm lagen die Triebwerke, die Flügel und vier Rumpfteile. Das
Ausmass der Zerstörung sowie die örtliche Lage der Trümmerteile standen in keinem
Widerspruch zu den zuletzt aufgezeichneten DFDR Daten und dem vorausgegangenen
Zerstörungsvorgang durch die Baumberührung.
Das Trümmerfeld grenzte unmittelbar an die erste Aufschlagstelle und wies eine Fläche
von ungefähr 1000 m2 auf.
Die Aufschlagszone und das zentrale Trümmerfeld wurden in Sektoren eingeteilt. Zur
Erstellung eines Situationsplanes hielt man den Unfallort stereofotogrammetrisch fest.
Die Positionen der grösseren Trümmerteile wurden protokolliert und die Trümmerteile
fotografiert. Nach Abschluss dieser Arbeiten erfolgte die Bergung und Einlagerung des
Wracks.
Nördlich des Trümmerfeldes floss ein Bach. Dieses Gewässer führte zum Unfallzeitpunkt
und während der Bergung ungefähr 10 l Wasser pro Sekunde. Die Feuerwehr
traf entsprechende Gewässerschutzmassnahmen.
Das mit Treibstoff und Öl verschmutzte Erdreich wurde grossflächig abgetragen und
fachgerecht entsorgt.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 74 von 152
1.13 Medizinische und pathologische Angaben
1.13.1 Kommandant
1.13.1.1 Vorgeschichte und medizinische Befunde
Laut den vorliegenden Unterlagen ist der Kommandant ausser gelegentlichen Erkältungskrankheiten
nie ernsthaft krank gewesen. Auch wesentliche Unfälle hat er keine
erlitten. Die vorliegenden Unterlagen der fliegermedizinischen Tauglichkeitsuntersuchungen
weisen keine krankhaften Befunde aus. Der Kommandant war 180 cm gross
und 82,5 kg schwer.
Wegen einer beginnenden Presbyopie (Altersweitsichtigkeit) besass der Kommandant
eine Lesebrille, es bestand aber keine fliegermedizinische Einschränkung bzw. Auflage
zum Tragen der Brille bei der Ausübung seiner Tätigkeit als Pilot.
1.13.1.2 Rechtsmedizinsche Befunde
Das Gutachten des Instituts für Rechtsmedizin der Universität Zürich kommt zu folgendem
Schluss:
„Zusammenfassung: Der mittels DNA-Analyse sicher als (Vorname, Name, Geburtsdatum
des Kommandanten) identifizierte Pilot in command starb anlässlich des Flugzeugabsturzes
HB-IXM, (…) an den Folgen eines Overkills. (…) Vorbestandene Organveränderungen
hatten keinen Einfluss auf die Flugtauglichkeit. (Vorname, Name) stand zum
Zeitpunkt des Absturzes weder unter Einfluss von Trinkalkohol noch unter anderen, im
chemisch-toxikologischen Gutachten aufgelisteten und untersuchten Wirkstoffen von
Drogen oder Medikamenten.“
1.13.2 Copilot
1.13.2.1 Vorgeschichte und medizinische Befunde
Aus der medizinischen Vorgeschichte wird eine Kreuzbandoperation am linken Kniegelenk
im Jahre 1998 erwähnt und aus der familiären medizinischen Vorgeschichte die
Zuckerkrankheit eines in direkter Linie Verwandten des Copiloten.
Die medizinische Tauglichkeitsuntersuchung durch den Vertrauensarzt des BAZL wurde
drei Mal durchgeführt, wobei eine davon nicht vollständig dokumentiert ist. Der Copilot
war 179 cm gross und wog 86,6 kg. Es wurden keine die Flugtauglichkeit einschränkenden
Befunde oder Diagnosen dokumentiert.
1.13.2.2 Rechtsmedizinische Befunde
Das Gutachten des Instituts für Rechtsmedizin der Universität Zürich kommt zu folgendem
Schluss:
„(Name, Vorname des Copiloten) wurde mittels DNA-Analyse sicher identifiziert. Der
Nachweis einer geringgradigen Lungenfettembolie belegt, dass (Name, Vorname) zum
Zeitpunkt des oben erwähnten Flugzeugabsturzes gelebt hat. (…), ist zu postulieren,
dass der Tod von (Name, Vorname) durch ein reflektorisches Herzkreislaufversagen infolge
Traumas des Brustkorbes hervorgerufen wurde. Vorbestandene Organveränderungen
hatten keinen Einfluss auf die Flugtauglichkeit. (Vorname, Name) stand zum
Zeitpunkt des Absturzes weder unter Einfluss von Trinkalkohol noch anderen, in chemisch-
toxikologischen Gutachten aufgelisteten und untersuchten Wirkstoffen von Drogen
und Medikamenten.“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 75 von 152
1.14 Feuer
1.14.1 Untersuchung von Brandspuren an Flugzeugtrümmern
Es gibt keine technischen und spurenkundlichen Hinweise darauf, dass es bereits vor
dem ersten Kontakt mit den Bäumen zu einem Brandausbruch im Flugzeug gekommen
war.
Hingegen gibt es Spuren, die darauf hinweisen, dass bei der ersten Baumberührung
der rechte Flügel aufgerissen wurde. Tankstrukturteile wurden in Flugrichtung auf der
rechten Hangseite gefunden. Zudem war am Tag nach dem Unfall in dieser Zone starker
Kerosingeruch wahrnehmbar.
Daraus konnte geschlossen werden, dass es bereits vor dem Aufschlag auf dem Boden
zum Austritt von Treibstoff gekommen war.
Das erste Trümmerteil mit Brandspuren wurde ca. 50 m vor der Aufschlagszone gefunden,
in einem Bereich, der sonst keine Brandspuren aufwies. Dabei handelte es sich
um einen Teil des rechten Flügels mit einem Stück der Landeklappe.
Somit kann davon ausgegangen werden, dass der Brand in der letzten Phase des Fluges,
nach dem Kontakt mit den ersten Bäumen und vor dem Aufschlag am Boden, ausgebrochen
ist.
Eine Zündung des Treibstoffes konnte durch die heissen Triebwerkaustrittsgase oder
durch Kurzschlüsse im elektrischen System erfolgen.
1.14.2 Resultate der Befragung von Augenzeugen
Auch die Befragung der Augenzeugen ergab keine Hinweise darauf, dass es bereits vor
dem ersten Baumkontakt Feuer an Bord des Flugzeuges gab.
Zitat Passagier Sitz 16A: „Das Flugzeug flog gegen Bäume, ein Flügel brach ab und das
Flugzeug geriet in Brand. Anschliessend ging es aber sanft gegen den Boden, es rüttelte
und „klöpfte“ (knallte), es ging schräg hinunter.“
Zitat Passagier Sitz 16F: „Plötzlich gab es einen Schlag ....... bemerkte ich auf der rechten
Seite, ausserhalb des Flugzeuges einen Feuerball. Bis zu diesem Moment hatte ich
geglaubt, dass alles normal verlaufe. Dann rumpelte es wie auf einer Achterbahn.
Plötzlich war es still.“
Zitat Passagier Sitz 10A: „Dann krachte es plötzlich und vom Bug kam rasend schnell
ein Feuerball durch die Kabine auf uns zu geschossen.“
Zitat Passagier Sitz 14B: „ .... plötzlich lautes Crashgeräusch zu hören war und die Maschine
stark schüttelte. Ich schaute sofort nach vorne und sah durch die offen stehende
Cockpittüre und die Cockpitscheiben, dass aussen am Flugzeug ein richtiger Funkenregen
hochging. Im nächsten Moment gab es einen gewaltigen Schlag ...“.
1.15 Überlebensmöglichkeiten
1.15.1 Allgemeines
Grundsätzlich wird die Überlebenschance bei einem Flugunfall durch verschiedene Faktoren
beeinflusst. Einerseits spielen physikalische Rahmenbedingungen, wie beispielsweise
Geschwindigkeit, Masse, Fluglage, Konfiguration, Topografie und Lage des Geländes,
die freigesetzte Brandenergie und die Art der Desintegration des Luftfahrzeuges
beim Aufprall eine Rolle. Andererseits werden die Überlebensmöglichkeiten massgeblich
durch eine allfällige Vorbereitung der Flugzeuginsassen auf eine bevorstehende
Notlandung und durch den Rettungsvorgang beeinflusst.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 76 von 152
1.15.2 Absturzvorgang
Unmittelbar vor der ersten Baumberührung flog die Maschine mit einem Steuerkurs
von 274° und ihre Geschwindigkeit über Grund betrug ungefähr 118 kt, entsprechend
ca. 60 m/s. In dieser Phase betrug die Querneigung des Flugzeugs annähernd null. Im
Zuge des Durchstartversuches und während der ersten Baumberührung nahm einerseits
die Triebwerkleistung zu und die Längsneigung veränderte sich von 2° attitude
nose down (AND) auf 5° attitude nose up (ANU). Die Sinkrate verringerte sich von ursprünglich
1200 ft/min auf annähernd 0 ft/min. Die HB-IXM befand sich in Landekonfiguration,
d.h. das Fahrwerk und die Landeklappen waren ausgefahren. Im Unfallzeitpunkt
befanden sich 3150 kg Treibstoff an Bord und die aktuelle Masse betrug rund
32 400 kg.
Es gibt keinen Hinweis darauf, dass die Flugzeuginsassen in Erwartung der bevorstehenden
Landung nicht angeschnallt waren. Sie waren auf eine normale Landung vorbereitet
und wurden von der Notsituation überrascht.
Weil der Winkel zwischen der Flugbahn und dem Gelände klein war, wurde das Flugzeug
nach dem Eintritt in die Bäume über eine Distanz von ungefähr 200 m abgebremst,
bevor es auf dem Boden aufprallte und zerbrach.
1.15.3 Alarmierung und Rettung
Nach 21:06:36 UTC brach der Radarkontakt mit dem Unfallflugzeug ab. Der Platzverkehrsleiter
löste um 21:10:32 UTC den Alarm aus.
Der erste Polizist traf um ca. 21:16 UTC beim Restaurant Kreuzstrasse ein, wo er von
einem Zeugen auf die Unfallstelle gewiesen wurde. Etwa zwei Minuten später traf eine
Polizei-Patrouille beim Restaurant Kreuzstrasse ein. Das Patrouillenfahrzeug fuhr mit
eingeschaltetem Blaulicht zum Schadenplatz. Einige Überlebende liefen auf das Blaulicht
zu und wurden von der Polizei betreut.
Die anrückenden Rettungskräfte wurden durch die Polizei eingewiesen, und die ersten
sieben Fahrzeuge mit 14 Mann der Berufsfeuerwehr des Flughafens Zürich trafen um
21:22 UTC am Unfallort ein. Die medizinischen Rettungsdienste trafen fast gleichzeitig
ein und kümmerten sich um die Überlebenden.
Die Feuerwehr legte vier Wasserleitungen mit einer Förderleistung von je 485 l/min. Es
standen ungefähr 30 000 Liter Wasser sowie ausreichend Schaumextrakt zur Verfügung.
Das Feuer, genährt vom noch vorhandenen Treibstoff, hatte sich bis zum Eintreffen der
Feuerwehr ungehindert entfaltet. Zu Beginn der Löscharbeiten wurden weiss-gelbe
Flammen und eine nahezu rauchlose Verbrennung beobachtet, was auf hohe Temperaturen
hindeutet. Es ereigneten sich mehrere Verpuffungen. Um 21:39 UTC, d.h.
17 Minuten nach Eintreffen der Feuerwehr, war das Feuer unter Kontrolle und grösstenteils
gelöscht.
In der Folge trafen weitere Feuerwehreinheiten der umliegenden Gemeinden Nürensdorf,
Bassersdorf und Kloten mit insgesamt 180 Mann auf dem Schadenplatz ein. Die
Berufsfeuerwehr des Flughafens Zürich verstärkte zudem ihre Einheit auf 40 Mann.
Unter der Leitung der Kantonspolizei erfolgte anschliessend eine grossangelegte Suchaktion
nach weiteren Überlebenden, die bis in die frühen Morgenstunden des folgenden
Tages dauerte. Aufgrund des schlechten Wetters konnte die Suche nicht aus der
Luft unterstützt werden.
Es konnten keine weiteren Überlebenden gefunden werden.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 77 von 152
1.15.4 Notsender
Beim Notsender (emergency locator transmitter - ELT) handelte es sich um ein Litton
ELT-952, das auf den Frequenzen 121.5 MHz und 243 MHz sendet. Er war oben im hinteren
Bereich des Rumpfes eingebaut. Beim Unfall wurde das Gerät zerstört. Gefunden
wurde der Antennenstecker mit einem Teil des Gehäuses und einem Teil der Printplatte.
Im Umkreis von 100 NM um Zürich wurde am 24. November 2001 zwischen 20:00 UTC
und 23:00 UTC weder durch das SARSAT/COSPAS-System des Such- und Rettungsdienstes
noch durch andere Luftfahrzeuge oder Bodenstationen ein Notsignal empfangen.
1.16 Weitere Forschungen
1.16.1 Begriffe und Definitionen
Folgende Begriffe und Definitionen sind dem manual of all-weather operations der
ICAO entnommen.
1.16.1.1 Visual Descent Point
Der visual descent point (VDP) ist der Punkt auf dem Endanflugkurs eines non precision
straight-in approach procedures, von dem aus ein normaler Sinkflug, ausgehend
von der MDA bis zum Aufsetzpunkt, auf der Piste begonnen werden kann, sofern die
nötigen Sichtreferenzen vorhanden sind.
1.16.1.2 Missed Approach Point
Der missed approach point (MAP) ist der Punkt in einem Instrumentenanflugverfahren,
bei dem das vorgeschriebene Durchstart- bzw. Fehlanflugverfahren spätestens eingeleitet
werden muss, damit die minimale Hindernisfreiheit gewährleistet ist.
1.16.1.3 Minimum Descent Altitude/Height
Die minimum descent altitude/height (MDA/H) ist eine festgelegte Höhe über Meer
bzw. über Grund in einem non precision approach oder circling approach, die ohne die
nötigen Sichtreferenzen nicht unterschritten werden darf.
1.16.2 Überprüfung des Standard VOR/DME Approach 28
1.16.2.1 Einleitung
Die Konformität des standard VOR/DME approach 28 mit den Betriebs- und Navigationsnormen
(procedure for air navigation services-operations – PANS-OPS) der ICAO
wurde in Zusammenarbeit mit dem Bureau d’Enquêtes et d’Analyses pour la sécurité
de l’aviation civile (BEA) aus Frankreich überprüft.
1.16.2.2 Initial Approach Segment
Das initial approach segment wird durch den radial 178° des VOR/DME ZUE gebildet.
Die Minimialhöhe von 5000 ft AMSL für diesen Abschnitt garantiert im Schutzkorridor
des Segments eine Freiheit von mehr als 500 m gegenüber dem höchsten Hindernis
(Langfuri, 963 m/M).
Die durch PANS-OPS verlangte minimum obstacle clearance (MOC) für das initial approach
segment beträgt 300 m.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 78 von 152
1.16.2.3 Intermediate Approach Segment
Das intermediate approach segment wird durch den radial 095° des VOR/DME KLO gebildet
und liegt in der Verlängerung des final approach segments. Die PANS-OPS verlangen
für diesen Abschnitt eine Mindestlänge von 7 NM. Beim standard VOR/DME approach
28 besitzt das intermediate approach segment eine Länge von 3.5 NM. Diese
Abweichung wurde bei der periodischen Überprüfung dieses Verfahrens durch Swisscontrol
am 23. November 2000 festgestellt und nach Angaben von skyguide an das
Bundesamt für Zivilluftfahrt (BAZL) weitergeleitet.
Das intermediate approach segment dient der Anpassung der Geschwindigkeit und der
Konfiguration eines Luftfahrzeuges für den Endanflug. Aus diesem Grund legen die
PANS-OPS fest, dass das Profil in diesem Abschnitt kein Gefälle aufweisen sollte. Ist
letzteres unumgänglich, sieht die Norm ein Maximalgefälle von 5 % vor. Zudem ist vor
dem final approach segment ein horizontaler Flugweg von mindestens 1.5 NM vorzusehen.
Der standard VOR/DME approach 28 sieht für das intermediate approach segment
einen Höhenverlust von 1000 ft vor. Die Kürze dieses segments erlaubt Luftfahrzeugen,
die einem Flugweg mit 5 % Gefälle folgen, einen horizontalen Abschnitt von ungefähr
0,2 NM vor Beginn des final approach segment.
1.16.2.4 Final Approach Segment
Das final approach segment wird ebenfalls durch den radial 095° (radial inbound 275°)
des VOR/DME KLO gebildet. Es beginnt am final approach fix (FAF), der bei 8 NM Distanz
vom DME KLO liegt, und endet am missed approach point (MAP) bei 2 NM DME
KLO.
Um die obstacle clearance altitude bzw. obstacle clearance height zu gewährleisten, ist
bei einer Distanz von 6 NM zum VOR/DME KLO ein Bezugspunkt mit einer Höhenlimite
von 3360 ft QNH definiert.
Die PANS-OPS präzisieren, dass „der Endanflug gegen eine Piste ausgeführt werden
kann, falls in gerader Linie gelandet wird (straight in approach), oder aber gegen einen
Flugplatz, falls ein indirekter Anflug durchgeführt wird“.
Da sich das VOR KLO südlich der Piste 28 befindet, weist das final approach segment
eine Richtung auf, die gegenüber der Pistenachse um 1° abweicht. Das final approach
segment verläuft so, dass es sich in einem Abstand von 1400 m von der Pistenschwelle
28 weniger als 150 m von der Pistenachse befindet. Die Ausrichtung des Endanfluges
stimmt deshalb mit den Kriterien der PANS-OPS für einen geradlinigen Anflug überein.
Die PANS-OPS schreiben vor, dass sich bei einem geradlinigen Anflug (straight in approach)
der Sinkfluggradient, respektive das Gefälle, wie folgt berechnen:
Der Abstand zwischen dem FAF und der Pistenschwelle einerseits und die Vertikaldistanz
zwischen der Höhe über Meer bzw. über Grund beim FAF und der Höhe von 15 m
(50 ft) über der Pistenschwelle andererseits werden zu einander in Beziehung gesetzt.
Die Anwendung dieser Methode im Falle des standard VOR/DME approach 28 führt zu
einem Gefälle von 6.0% bzw. 3.4°.
Wenn im final approach segment eine weitere Höhenbegrenzung notwendig ist, wie es
der Punkt bei 6 NM im standard VOR/DME approach 28 darstellt, so schreibt in diesem
Fall die PANS-OPS vor, dass die obige Methode in Bezug auf diese Höhenbegrenzung
angewendet werden muss. Von diesem Punkt an ergibt sich somit ein Gefälle von
6.3 % bzw. 3.6°.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 79 von 152
Das für den standard VOR/DME approach 28 publizierte Gefälle von 5.3 % bzw. 3.03°
entspricht zwar dem Gefälle zwischen dem FAF und der Höhenbegrenzung bei 6 NM,
ist aber nicht mit den PANS-OPS zu vereinbaren.
Zusätzlich ist noch festzuhalten, dass der für den standard VOR/DME approach 28 publizierte
Gleitweg mit einem Gefälle von 5.3 % bzw. 3.03° den Gleitpfad des precision
approach path indicator (PAPI) von 3.7° in einer Höhe von 1500 ft AAL und 3.5 NM vor
der Pistenschwelle entfernt schneidet (vgl. Anhang 11, Punkt P-1). Diese Werte liegen
weit über der veröffentlichten OCH (MDA) und bei einer Distanz von der Pistenschwelle,
die eindeutig höher als die zugehörigen Sichtminima für einen geradlinigen Anflug
sind. Die Anflugkarte des standard VOR/DME approach 28 gibt an, dass dem Gleitpfad
des PAPI zu folgen ist, sobald visuelle Bezugspunkte erreicht werden. Für den Fall,
dass dem nominalen Gleitweg von 5.3% gefolgt wird und dabei die visuellen Bezugspunkte
erst an der OCH (MDA) sichtbar werden, befindet man sich ungefähr 100 ft
über dem Gleitweg des PAPI (vgl. Anhang 11, Punkt P-2). Um den Gleitweg des PAPI
zu erreichen, muss nun ein Sinkflug eingenommen werden, der steiler als die eingestellte
Neigung des PAPI (6.5 % bzw. 3.7°) ist. Ein solches Anschneiden des PAPIGleitweges
von oben birgt die Gefahr eines nicht stabilisierten Endanfluges auf geringer
Höhe in sich. Diese Gefahr würde sich noch verschärfen, wenn ein Flugzeug einen
Gleitweg mit geringerer Neigung als dem nominalen wählen bzw. auf der OCH (MDA)
horizontal bis in die Nähe des MAP fliegen würde, um visuelle Bezugspunkte zu erreichen.
Im Übrigen lässt die Seitenansicht auf der Anflugkarte des standard VOR/DME approach
28 den Schluss zu, dass der Abschnitt, der nach Instrumenten geflogen wird, den
Gleitweg des PAPI bei der OCH schneidet, was in Wirklichkeit nicht der Fall ist.
In diesem Zusammenhang sei auf die Radaraufzeichnungen der Flüge CRX 3891 und
3797 vom 24. November 2001 im Anhang 4 verwiesen.
1.16.2.5 Missed Approach Segment
Das missed approach segment des standard VOR/DME approach 28 wird zuerst durch
das Folgen des radials 255° vom VOR/DME KLO und anschliessend durch den radial
012° des VOR/DME WIL in Richtung des Punktes EKRIT gebildet. Es enthält keine besonderen
Eigenheiten. Allerdings sollte im Hinblick auf den Winkel von 117° zwischen
den erwähnten Flugwegen ein Punkt für den Beginn der Kursänderung definiert werden.
1.16.2.6 Anflugkarte gemäss Schweizer Luftfahrthandbuch AIP
Die im Schweizer Luftfahrthandbuch AIP publizierte Anflugkarte mit der Nummer LSZH
AD 2.24.10.7-1 für den standard VOR/DME approach 28 wich in mehreren Punkten von
den Empfehlungen und Normen der ICAO ab.
1.16.2.7 Zusammenfassung
Die obenstehenden Feststellungen erlauben die Schlussfolgerung, dass das veröffentlichte
Verfahren für den standard VOR/DME approach 28 Abweichungen gegenüber
den PANS-OPS aufweist, die in den diesbezüglichen nationalen Vorschriften (Swiss procedures
design manual) nicht vorgesehen sind.
Die Schweiz hat der ICAO nicht mitgeteilt, dass die nationalen Vorschriften und Regeln
von den Vorgaben des ICAO-Annex 4, der die Ausführung von Karten zum Inhalt hat,
abweichen.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 80 von 152
1.16.3 Vergleichsflüge im Simulator
1.16.3.1 Allgemeines
Um die Arbeitsabläufe der Flugbesatzung einer Avro 146 RJ 85/100 während eines
standard VOR/DME approach 28, das zugehörige instrument setting und die daraus resultierenden
Darstellungen auf den EFIS beurteilen zu können, wurden mehrere Vergleichs-
bzw. Versuchsflüge auf verschiedenen Simulatoren durchgeführt. Diese Flüge
basierten auf folgenden Grundlagen:
• Aufzeichnung und Transkript des CVR
• Aufzeichnungen des DFDR
• Radaraufzeichnungen des Flugweges
• Aufzeichnungen und Transkripte der Funkgespräche
• Fotografien der cockpit panel mit den Schalterstellungen nach dem Unfall
• Dokumentationen der zum Unfallzeitpunkt gültigen Anflugverfahren
• Die zum Unfallzeitpunkt gültigen Betriebsverfahren von Crossair
Einerseits wurden Anflüge nach den im Unfallzeitpunkt gültigen Betriebsverfahren von
Crossair durchgeführt. Andererseits wurden verschiedene Vergleichs- bzw. Versuchsflüge
vorgenommen, bei denen die Parameter des Unfallfluges verwendet wurden. In
diesem Rahmen wurden insbesondere folgende Versuche gemacht:
• Anflug mit Benutzung des push buttons ALT HLD bei Erreichen der MDA
• Anflug, bei dem auf 500 ft Radarhöhe ein Durchstart eingeleitet wurde
• Anflug, bei dem auf 300 ft Radarhöhe ein Durchstart eingeleitet wurde
• Anflug zur Abklärung der Funktion des ground proximity warning system (GPWS)
• Abklärung des instrument settings und der entsprechenden Darstellungen auf den
primary flight displays (PFD) und navigation displays (ND) des EFIS
Die optischen Verhältnisse in Abhängigkeit von den Wetterbedingungen und den Lichtverhältnissen
sowie die praktische Anwendbarkeit der publizierten Wetterminima für
den standard VOR/DME approach 28 wurden in einem Simulator mit den entsprechenden
Visualisierungsmöglichkeiten untersucht. Die Abklärung der Sichtverhältnisse wurde
im Flug unter Einhaltung der MDA entlang des radial 095° des VOR/DME KLO
durchgeführt.
Für den Anflug wurde ein visual descent point (VDP) basierend auf einem Gleitweg von
3,7° (PAPI) und einer minimum descent altitude (MDA) von 2390 ft QNH berechnet,
was einen VDP bei 2.4 NM (4.4 km) von der Pistenschwelle 28 ergibt. Bezüglich des
VOR/DME KLO liegt der VDP in einer Entfernung von 3.3 NM (6.1 km). Eine Auswahl
entsprechender Bilder findet sich im Anhang 5.
1.16.3.2 Ergebnisse
Die Versuche in den Simulatoren ergaben die folgenden Erkenntnisse:
• Die Arbeitsbelastung während eines standard VOR/DME approach 28 entspricht
den üblichen Anforderungen eines non precision approach. Gegenüber einem precision
approach muss die Besatzung zusätzlich die vertikale Navigation bestimmen.
• Die von der Crossair im Zeitpunkt des Unfalls verwendeten Betriebsverfahren für
non precision approaches entsprachen den Vorgaben des Bundesamtes für Zivilluftfahrt
bzw. der Joint Aviation Requirements JAR-OPS 1.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 81 von 152
• Wird der push button ALT HLD 100 ft über der MDA, d.h. bei 2490 ft QNH gedrückt,
sinkt das Flugzeug zunächst bis auf 2360 ft QNH, steigt dann wieder leicht
und stabilisiert sich schliesslich auf einer Höhe von 2410 ft QNH.
• Wird der push button ALT HLD auf der MDA, d.h. bei 2390 ft QNH gedrückt, sinkt
das Flugzeug zunächst bis auf 2260 ft QNH, steigt dann wieder leicht und stabilisiert
sich schliesslich auf einer Höhe von 2310 ft QNH.
• Beim Durchstartversuch, der bei einer Radarhöhe von 500 ft RA eingeleitet wurde,
stellte man fest, dass die synthetische Stimme mit der Information „five hundred“
bei effektiv 490 ft RA ertönte. Bei einer Radarhöhe von 420 ft RA begann das
Flugzeug wieder zu steigen. Die volle Triebwerkleistung war 5.5 Sekunden nach
Drücken des TOGA buttons verfügbar. Der gesamte Vorgang wurde mit eingeschaltetem
autopilot und auto throttle geflogen.
• Beim Durchstartversuch, der bei einer Radarhöhe von 300 ft RA eingeleitet wurde,
stellte man fest, dass die synthetische Stimme mit der Information „minimums“ bei
effektiv 290 ft RA ertönte. Auf 280 ft RA wurde der autopilot ausgeschaltet und
der go around von Hand geflogen. Bei einer Radarhöhe von 270 ft RA begann das
Flugzeug wieder zu steigen.
• Die HB-IXM war mit einem GPWS ausgerüstet (vgl. Kap. 1.6.10). Erfolgt in Landekonfiguration
die Annäherung an den Boden mit einer zu grossen Sinkrate, so
spricht die Warnung des mode 1 – excessive descent rate an. Während eines Anfluges
mit einer Sinkrate von 1200 ft/min ertönte die akustische Warnung „sink rate“
zusammen mit der optischen Warnung „pull up“ bei einer Radarhöhe von 125
ft RA. Der unmittelbar darauf eingeleitete Durchstart, unter Ausschaltung des autopilot,
war erfolgreich und führte bis auf eine Minimalhöhe von 65 ft RA. Die akustischen
und optischen Warnungen entsprachen den Herstellerangaben (vgl.
Anhang 3). Während des Unfallfluges sprachen die Warnungen nicht an, weil sich
die Maschine stets knapp ausserhalb der mode 1 resp. der mode 2B envelopes befand.
• Bei einer meteorologischen Sicht von 5000 m waren die approach lights in einem
Abstand von 3.3 NM (6.1 km) vom VOR/DME KLO sichtbar. Die runway lights waren
bei 2.8 NM (5.2 km) erkennbar.
• Bei einer meteorologischen Sicht von 3500 m waren die approach lights in einem
Abstand von 3.0 NM (5.6 km) vom VOR/DME KLO zu erkennen. Die runway lights
wurden bei 2.5 NM (4.6 km) sichtbar.
• Bei einer meteorologischen Sicht von 2000 m waren die approach lights in einem
Abstand von 2.1 NM (3.9 km) vom VOR/DME KLO sichtbar. Die runway lights waren
bei 1.8 NM (3.3 km) erkennbar.
• Bei einer meteorologischen Sicht von weniger als 3500 m konnten vom VDP aus
weder die approach lights noch die runway lights erkannt werden.
1.17 Angaben zu verschiedenen Organisationen und deren Führung
1.17.1 Flugbetriebsunternehmen Crossair
1.17.1.1 Allgemeines
Das Flugbetriebsunternehmen Crossair wurde 1975 gegründet und wickelte in den ersten
Jahren hauptsächlich Bedarfsluftverkehr mit zweimotorigen Geschäftsreiseflugzeugen
ab. 1979 beschaffte das Unternehmen das Flugzeugmuster SA 227 TC Metroliner
II und nahm regelmässigen Linienverkehr auf. In den folgenden zwei Jahrzehnten
wuchs das Unternehmen zu einer grossen Regionalfluggesellschaft, welche im UnfallSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 82 von 152
zeitpunkt mit rund 3500 Angestellten mehr als 80 Flugzeuge der Baumuster SAAB
2000, Embraer 145, Avro 146 RJ 85/100 und Boeing MD 83 betrieb.
1.17.1.2 Struktur des Bereichs Flight Operations
Mit der Einführung des Flugzeugmusters British Aerospace BAe 146-200 „Jumbolino“
im Jahre 1990 wurden im Bereich flight operations erstmals einzelne Flotten geschaffen.
Die Flottenchefs waren für die Verfahren und die technische Ausrüstung ihrer Flotte
verantwortlich und verfügten unter anderem über einen eigenen Cheffluglehrer und
einen eigenen technischen Piloten.
Auf gleicher Ebene wie die Flottenchefs war ein Chefpilot angeordnet, der hauptsächlich
für personelle Belange und insbesondere für die Pilotenauswahl zuständig war.
Die Überwachung der Leistungen der Flugbesatzungen und deren Qualifikation war Sache
der Flottenchefs. Bei Umschulungen koordinierte der Chefpilot den Personalbedarf
und wählte die entsprechenden Piloten in Absprache mit den Flottenchefs aus. Senioritätslisten
für die Flugbesatzungen waren vorhanden, kamen aber bei Umschulungen
nicht immer zur Anwendung.
Seit 1998 wurde das Flugbetriebsunternehmen Crossair nach den Joint Aviation Requirements
JAR-OPS 1 betrieben und wies deshalb neben einem accountable manager
weitere Verantwortungsträger – sog. postholder – für die Bereiche Flugbetrieb (flight
operations), Unterhalt (maintenance), Ausbildung (crew training) und Betrieb am Boden
(ground operations) auf. Zusätzlich existierte eine Qualitätssicherung (quality management
system).
Dem Präsidenten und chief executive officer (CEO), der gleichzeitig auch die Aufgabe
des accountable manager ausübte, war der vice president flight operations als Leiter
des Flugbetriebs direkt unterstellt. Diesem standen bis im Jahre 2000 unter anderem
als Stabstellen der flight safety and security officer sowie der Auswahlausschuss (selection
board) für Flugbesatzungen zur Verfügung.
Der vice president flight operations führte die Bereiche fleet and cockpit personnel,
flight operations support, resource planning, pilots’ administration und flight operations
engineering.
Mit dem Übergang zur Struktur nach den JAR-OPS 1 wurde aus der Funktion des Chefpiloten
die Funktion des vice president fleet and cockpit personnel geschaffen. Der frühere
Chefpilot wurde zum Flottenchef Avro RJ 85/100 ernannt. Im Gegensatz zur Organisation
vor 1998 waren die Flottenchefs nun auch mit allen personellen Aspekten
ihrer Besatzungen – mit Ausnahme der Pilotenauswahl – betraut. Bei Umschulungen
koordinierte nun der vice president fleet and cockpit personnel den Personalbedarf,
wobei der Auswahlprozess grundsätzlich auf Stufe Flottenchef abgewickelt wurde. Vor
dem Unfallzeitpunkt enthielten die Richtlinien des Unternehmens (fleet manual), welche
die Erlangung einer Musterberechtigung betrafen, keine Angaben darüber, wie
Kandidaten für eine Umschulung ausgewählt werden sollen. Auch war nicht geregelt,
welche Massnahmen zu treffen sind, wenn während einer Umschulung Leistungsprobleme
auftreten oder ein Pilot den Umschulungskurs nicht besteht.
Die Abteilung fleet and cockpit personnel umfasste die vier Flugzeugflotten der Baumuster
SAAB 2000, Embraer 135/145, Avro RJ 85/100 und MD 80 und wurde von einem
vice president geführt. Jede dieser Flotten wurde von einem Flottenchef geleitet
und verfügte neben dem üblichen administrativen Apparat über einen Cheffluglehrer
und einen technischen Piloten. Zusätzlich war in diesem Bereich auch die Fachstelle pilots’
recruitment angeordnet, die sich mit der Pilotenauswahl beschäftigte.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 83 von 152
Die Abteilung flight operations support umfasste die Sektionen performance and flight
planning, safety, security and ermergency training, base operations, policy and standards
und eine aircraft and accident response organisation. Im Herbst 2000 wurde zusätzlich
der flight safety and security officer im Bereich flight operations support eingereiht.
Der Bereich resource planning gliederte sich in die Abteilungen longterm and strategic
planning, training planning sowie rostering.
Der Bereich pilots’ administration umfasste die Abteilungen licences, permits, documentation
und IT-coordination.
1.17.1.3 Flugsicherheitsabteilung
Die Flugsicherheitsabteilung war zuerst als Stabsstelle dem vice president flight operations
unterstellt. Im Herbst 2000 wurde sie in den Bereich flight operations support
eingeordnet. Sie bestand im Wesentlichen aus einem flight safety officer, der diese
Aufgabe teilzeitlich zu 50 Prozent versah und in der übrigen Zeit als Flugbesatzungsmitglied
tätig war. Dem flight safety officer stand eine Assistentin zu 30 Prozent zur
Verfügung. Somit umfasste die Flugsicherheitsabteilung im Unfallzeitpunkt 80 Stellenprozente.
Der flight safety officer verfügte über keine finanziellen Kompetenzen.
Bevor der flight safety officer im September 2000 sein Amt übernommen hatte, wurde
diese Aufgabe vom Leiter des Bereichs flight operations support versehen, der gleichzeitig
auch Stellvertreter des vice president flight operations war und daneben als
Kommandant im Linienverkehr eingesetzt wurde.
Unter der Leitung des flight safety officers fanden viermal jährlich Treffen des flight safety
boards statt. Dieser 1999 gegründete Ausschuss diskutierte die anfallenden Fragen
und Probleme im Bereich der Flugsicherheit.
Die Aufgaben des flight safety officers waren im operations manual part A (OM A) geregelt.
Im Wesentlichen oblag ihm die Überwachung der Flugsicherheit und des Flugbetriebs.
Mit dem Flugbetrieb und den einzelnen Flotten war der flight safety officer
über seinen direkten Vorgesetzten, den vice president flight operations support, verbunden.
Als Instrumente stand der Flugsicherheitsabteilung neben den personellen Ressourcen
seit Beginn des Jahres 2001 auch ein Informatiksystem zur Erfassung von Vorfällen zur
Verfügung. Bis im Sommer des Jahres 2001 verfügte die Crossair über ein occurence
report system, nicht aber über ein vertrauliches Meldesystem. Im Juni 2001 schuf der
flight safety officer für die Besatzungen die Möglichkeit, einen flight safety confidential
report einzureichen. Bis zum Unfallzeitpunkt trafen pro Monat durchschnittlich etwa
zwei vertrauliche Meldungen zu Flugsicherheitsproblemen in der Flugsicherheitsabteilung
ein. Im Jahre 1997 waren mit den flight safety news und den fligth safety flash
zwei interne Publikationen zur Information der Besatzungen über Flugsicherheitsaspekte
geschaffen worden.
Der flight safety officer konnte unter Einbezug von weiteren Spezialisten interne Untersuchungen
von Vorfällen durchführen und seinem Vorgesetzten Vorschläge zur Verbesserung
der Flugsicherheit unterbreiten. Zwischen seiner Amtsübernahme im Herbst
2000 und dem Zeitpunkt des Unfalls hat er keine interne Untersuchung durchgeführt.
Im gleichen Zeitraum empfahl er dem vice president flight operations support vier
Massnahmen, die alle keinen Bezug zum Unfallgeschehen hatten.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 84 von 152
Bei der Einführung neuer Flugzeugmuster wurde die Flugsicherheitsabteilung nicht einbezogen.
Zwischen den Ausbildungsverantwortlichen von Umschulungen und dem
flight safety officer fand kein Erfahrungsaustausch statt.
Die Flugsicherheitsabteilung hatte weder Kenntnis von Flugbesatzungen, die Leistungsprobleme
oder Leistungseinbrüche zeigten, noch wurde sie bei Flugsicherheitsproblemen
beigezogen, die auf Regelverstösse zurückzuführen waren. Die entsprechenden
Piloten wurden diesbezüglich durch die Flottenchefs betreut.
Zusammenfassend bezeichnete der flight safety officer die Tätigkeit der Flugsicherheitsabteilung
als reaktiv. Gemäss eigenen Angaben war er bemüht, diesbezüglich mit
neuen Methoden proaktiv zu werden.
1.17.1.4 Fliegerische Kultur
Es wurden mehrere Zeugen befragt, die als Flugbesatzung auf Saab 340, Saab 2000,
MD 80, Embraer 145 und Avro 146 RJ 85/100 eingesetzt worden waren. Die Auswertung
dieser Aussagen zeigt die folgenden Punkte:
• Die einzelnen Flotten waren bezüglich ihres Betriebes bzw. ihrer Betriebskultur sehr
unterschiedlich. So orientierte sich beispielsweise die Flotte des Flugzeugmusters
MD 80 an den Abläufen und Verfahren der Fluggesellschaften Balair und Swissair.
Die Saab 340 hingegen, welche das Basisflugzeug für viele Crossair Piloten war,
wurde gemäss mehreren Auskunftspersonen teilweise weniger reglementskonform
betrieben.
• Im Rahmen der Untersuchung wurden über 40 Vorfälle aus den Jahren 1995 bis
2001 erhoben, bei denen Besatzungen eigene Verfahren entwickelt oder Verfahrensvorgaben
nicht eingehalten hatten. Diese Vorfälle blieben dem Flugbetriebsunternehmen
mehrheitlich verborgen, obwohl teilweise die Sicherheit tangiert gewesen
war.
• Das Hierarchiegefälle zwischen Kommandanten und Copiloten wurde mehrfach als
gross bezeichnet. Copiloten empfanden es als wenig wirksam, gewisse Kommandanten
auf Fehler oder Missstände aufmerksam zu machen. Als Erklärung für diesen
Sachverhalt wurde unter anderem der grosse Erfahrungsunterschied zwischen älteren
Kommandanten und jungen Copiloten genannt.
1.17.1.5 Auswahlverfahren für Copiloten
1.17.1.5.1 Vorgaben der Joint Aviation Requirements
Nach den Richtlinien der Joint Aviation Requirements (JAR) muss das Flugbetriebsunternehmen
sicherstellen, dass geeignete Besatzungen beschäftigt werden.
Zur Beurteilung des von Crossair verwendeten Auswahlverfahrens werden im Folgenden
die Vorgaben der Joint Aviation Requirements flight crew licencing 3 (JAR-FCL 3),
subpart A, B und C, section 2 verwendet. Diese Vorgaben regeln die Ausstellung von
Tauglichkeitszeugnissen durch die Aufsichtsbehörde und stellen damit eine Art Mindestanforderung
an Flugbesatzungsmitglieder dar. Die für diesen Unfall relevanten Teile
aus JAR-FCL 3 lauten wie folgt:
„The performance of aviators requires certain cognitive, psychomotor and interpersonal
capabilities in order to perform operational tasks in a reliable way especially during
high workload and stress. (...) A reduction in pilot capability is never easily detected or
demonstrated. The majority of accidents in aviation is caused by human error not by
physical incapacitation or technical failures. People may become unsafe for various
reasons: low mental or psychomotor problems or accelerated ageing, to name a few.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 85 von 152
Such personal conditions are not usually classified by psychiatric and neurological
standards as disqualifying criteria. They have to be assessed by a psychological evaluation.
(...) Only psychologists acceptable to the AMS or organisations which employ psychologists
acceptable to the AMS are allowed to perform the psychological evaluation.“
Gemäss den Vorgaben von JAR-FCL 3 sollten in einem Auswahlverfahren neben den
Fähigkeiten, die direkt mit der fliegerischen Tätigkeit zusammenhängen (operational
aptitudes), auch die Lebensumstände (biography) und gewisse Aspekte der Persönlichkeit
(personality factors) erhoben und beurteilt werden:
• “Operational aptitudes: logical reasoning, mental arithmetic, memory function, attention,
perception, spatial comprehension, psychomotor function, multiple task
abilities
• Biography: general life history, family, education, socio-economic status, training
progress and occupational situation, critical behavioural incidents, diseases and accidents,
delinquency
• Personality factors: motivation and work orientation, decision making, social capability,
stress coping”
Bezüglich der Methodik eines Auswahlverfahrens für Flugbesatzungsmitglieder lauten
die Vorgaben von JAR-FCL 3 wie folgt:
“Because of the diversity of psychological methods (...) available for the assessment of
the different criteria mentioned on the criteria list above, no tests, questionnaires or
other methods have been recommended for the assessment of these criteria. However,
general guidelines are described below for guidance and finding adequate assessment
methods.
1. Whenever possible standardised psychological tests and questionnaires which fulfill
at least the following general requirements should be used for criteria assessment.
Reliability: The stability (test-retest-reliability) or at least the internal consistency of
tests/questionnaires has been proved (whenever possible with regard to an application
in personnel selection).
Construct validity: The extent to which a test/questionnaire measures the construct
(aptitude, personality trait) it is intended to measure has been proved (whenever possible
with regard to an application in personnel selection).
The test or questionnaire should clearly differentiate between the applications (ideally
normal distribution of test scores) even in a highly pre-selected group like, e.g. holders
of pilot licence.
Norms: In order to evaluate the test/questionnaire results of individual subjects, standard
norms have to be available for the test/questionnaire. These norms should be derived
from the distribution of test results in samples which are more similar in important
characteristics (e.g. age, education, level etc.) to the group of applicants under
discussion. For reasons of standardisation it is recommended to use STANINE scores as
norms for all tests or questionnaire.
2. In case that observer ratings are used for criteria assessment, it should be ensured
that the observers are very well trained and that the inter-rater-reliability is high, i.e.
that different observers agree about their evaluation of a certain behaviour shown by
an applicant. As a rule a high inter-rater-reliability can be achieved by using clearly defined
rating scales and/or classification systems.
3. The whole test system used for the criteria assessment should be characterised by
redundancy with regard to the sources of information used to assess the aptiSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 86 von 152
tudes/personality traits mentioned in the criteria list above. Whenever possible each of
these aptitudes/personality traits should be assessed/tested on the basis of at least
two independent sources of information (tests, questionnaires, observer ratings, interview-
data, biographical data). This kind of cross validation is recommended in order to
improve the overall reliability of the whole test system.
4. Decision rules: The decision about the classification of an applicant or holder of a
Class 1 or Class 2 medical certificates should be based on the following general rules.
However, in the case of clear deficiencies in operational aptitudes of already experienced
pilots, it has to be considered whether or not personality characteristics can
compensate for the resulting risks.
Operational aptitudes: In order to assess as non-critical an examenee should not
have a clear deficiency in any operational aptitude as compared with the norm group.
Personality factors: An examinee must be evaluated (by a psychologist) as noncritical
with regard to the main personality factors: motivation and work orientation,
social capabilities and stress coping.
This usually implies that the examinee is not assessed as an extreme case with regard
to the normal range of variation in the contributing factors.”
1.17.1.5.2 Ablauf des Verfahrens bei Crossair
Das Auswahlverfahren für Copiloten bestand aus einem Datenerhebungs- und einem
Entscheidungsprozess. Für den ersten Vorgang – die eigentliche Untersuchung der
Kandidaten – war die Abteilung pilots’ recruitment zuständig, die im Bereich fleet and
cockpit personnel angeordnet war. Diese Abteilung bestand aus einer Psychologin, einem
fliegerischen Experten und rund einem Dutzend langjähriger Piloten ohne psychologische
Fachausbildung, die teilzeitlich als recruitment officers eingesetzt wurden.
In einem ersten Schritt führte ein recruitment officer mit den Bewerbern ein Interview
von ungefähr eineinhalb Stunden Dauer. Je zwei Kandidaten zusammen wurden anschliessend
in einem Flugsimulator geprüft. Mit den Resultaten dieser beiden Tests fällten
der fliegerische Experte und die Psychologin den Entscheid über die weitere Abklärung
oder das Ausscheiden der Kandidaten. Des weiteren musste ein Test über fliegerisches
Fachwissen absolviert werden.
Bei positiv beurteilten Bewerbern wurden durch die recruitment officers in einem zweiten
Schritt Einzel- und Gruppenassessments durchgeführt. Zusätzlich verwendete man
einen externen Psychologen, der mit psychodiagnostischen Tests eine Abklärung der
Persönlichkeit vornahm. Dabei wurden die Aspekte „Soziale Kompetenz“ und „Unternehmerische
Kompetenz“ erhoben, wobei der externe Psychologe die Bewerber diesbezüglich
in Prosaform beschrieb. Die recruitment officers füllten aufgrund ihrer Beobachtungen
zu den gleichen Bereichen die folgende tabellarische Zusammenstellung
aus. Die Eigenschaften wurden digital (Ja/Nein), d.h. im Sinne von vorhanden oder
nicht vorhanden, bewertet.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 87 von 152
Soziale Kompetenz
Aktiver Holer Beschafft sich Informationen, Material, etc.
selbständig; fragt nach, wenn ihm etwas
unklar ist, geht auf seine Umgebung zu
Ja/Nein
Emotionale Verträglichkeit
Fühlt sich wohl in seiner Umgebung, bleibt
sich selber, verstellt sich nicht, ist locker
etc.
Ja/Nein
Individualist Kann sich abgrenzen, macht nicht einfach
mit, bleibt sich selbst, verschafft sich Profil
durch eigene Meinung etc.
Ja/Nein
Humor Kann über sich selbst und über die Situationen
adäquat lachen, ist locker etc.
Ja/Nein
Unternehmerische Kompetenz
Umgang mit Rahmenbedingungen
Kann mit raschen, unverhofften Situationsänderungen
gut umgehen, kann rasch umstellen
und sich anpassen (psychisch und
physisch) etc.
Ja/Nein
Verkäufer Steht zu seiner Meinung, Idee, etc. und
kann diese kommunizieren und damit überzeugen
Ja/Nein
Grosszügigkeit Kann Meinung anderer Menschen stehen
lassen, nimmt Gedanken anderer auf, auch
wenn sie ihm nicht passen, etc.
Ja/Nein
Entscheidet pro Firma Kann seine eigenen Bedürfnisse und Wünsche
vorübergehend zugunsten der Firma
oder zugunsten von etwas Übergeordnetem
zurückstellen
Ja/Nein
Lösen von Problemen Kann Probleme analysieren, Lösungsvarianten
abwägen und Entscheidungsgrundlagen
erarbeiten, kann strukturiert
vorgehen, etc.
Ja/Nein
Alle Ergebnisse wurden schliesslich gesammelt und an den Auswahlausschuss (selection
board) weitergeleitet, der über die Anstellung der überprüften Kandidaten entschied.
Der Untersuchungsleitung konnten keine formalisierten Entscheidungskriterien
vorgelegt werden. Das selection board bestand meistens aus mehreren Mitgliedern der
Geschäftsleitung. Die Fachleute der Abteilung pilots’ recruitment nahmen in beratender
Funktion ebenfalls an selection board meetings teil.
Nach Abschluss des Auswahlverfahrens wurde das Dossier der Abteilung pilots’ administration
übergeben. Eine Zusammenarbeit mit den Flotten oder mit den Verantwortlichen
für die Ausbildung in crew resource management (CRM), die Rückmeldungen
oder eine Qualitätskontrolle ermöglicht hätten, fand – ausser in wenigen Einzelfällen –
nicht statt.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 88 von 152
1.17.1.6 Ausbildung in Crew Resource Management
Die Grund- und Weiterbildung im crew resource management (CRM) ist in den JAROPS
Vorschriften geregelt.
Angehende Verkehrspiloten werden seit der Einführung von JAR-FCL am 1. Juli 1999
im Rahmen ihrer Grundausbildung und auf dem Gebiet „human performance and limitations“
in folgende Gebiete eingeführt:
• „Wie funktioniert der Mensch und weshalb?“
• „Wie funktionieren Menschen im Team und weshalb?“
Zur Behandlung dieser Themen werden im Rahmen der gesamten Ausbildung zum
Verkehrspiloten 70 bis 100 Unterrichtsstunden Fliegermedizin und Fliegerpsychologie
vermittelt. Der Copilot durchlief diese Grundausbildung. Zur Zeit der Grundausbildung
des Kommandanten exisiterten Ausbildungsinhalte für CRM in heutiger Form noch
nicht. Aus diesem Grund absolvierte der Kommandant keine vergleichbare Basisausbildung.
Die Fluggesellschaft gab an, dass er im Rahmen jährlicher Ausbildungsmodule
mit CRM-Inhalten vertraut gemacht worden sei.
Die Weiterbildung CRM war in folgende Gefässe integriert:
Inital operator CRM: erstmalige Überprüfung der erlernten, theoretischen Konzepte in
Bezug auf deren praktische Tauglichkeit gemäss den gemachten Erfahrungen während
des ersten Dienstjahres als selbständiger Copilot, und zwar in einem zweitägigen Kurs
am Ende des ersten Dienstjahres.
Conversion CRM: Einführung in die spezifischen Eigenheiten eines neuen Flugzeuges
oder eines anderen Arbeitgebers in Bezug auf andere Technologie, Ergonomie, Einsatzgebiete
und Verfahren.
Command CRM: Einführung in die spezifischen Anforderungen eines zukünftigen Bordkommandanten
in Bezug auf human factors (Führungsmodalitäten, Motivation anderer
Mitarbeitenden u.a.m.).
Recurrent CRM: Regelmässig wiederkehrende Bearbeitung verschiedener Themen aus
den Bereichen menschliche Faktoren, Methodik-Tiefgang und Periodizitäten. Diese regelmässigen
human factors refresher werden beim Cockpitpersonal in folgende Kurse
eingebaut:
• Recurrent simulator training
• Emergency and survival equipment training (ESET)
• Modular CRM (human aspects development)
Bei der Crossair wurde das inital operator CRM während der company introduction als
zwei- bis dreitägiger Kurs durchgeführt. Die Themen entsprachen den Vorgaben von
JAR-FCL und wurden im Frontalunterricht vermittelt. Ein Syllabus ist nicht vorhanden.
Das reccurent crew resource management in den Jahren 1999 bis 2001 war jeweils in
einen tägigen emergency procedure refresher course integriert. Es waren jeweils drei
bis vier Stunden für den Bereich CRM reserviert. Die behandelten Themen entsprachen
den Forderungen der JAR-FCL.
1.17.1.7 Umschulungskurs auf das Flugzeugmuster MD 80
Im Jahre 1995 begann die Crossair 12 Flugzeuge der Baumuster McDonnell Douglas
MD 82 und MD 83 einzusetzen, die vorher durch die Fluggesellschaften Balair/CTA,
Swissair und Aero Lloyd betrieben worden waren. Zusammen mit den Flugzeugen wurSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 89 von 152
den auch einige Instruktoren und Flugbesatzungen aus den genannten schweizerischen
Flugbetriebsunternehmen übernommen. Der Flottenchef der neu gegründeten
Flotte MD 80 stammte von der Crossair, während als Cheffluglehrer ein erfahrener Instruktor
bestimmt wurde, der früher bei der Swissair und der Balair/CTA als Cheffluglehrer
eingesetzt war. Das Fluglehrercorps für die Umschulung der Crossair-Flugbesatzungen
bestand aus Mitarbeitern der Crossair und ehemaligen Angestellten der Balair/
CTA bzw. der Swissair.
Für die Umschulungskurse wählte die Crossair den gleichen Aufbau wie die früheren
Flugzeugbetreiber und benutzte für die MD 80 die gleichen Betriebsverfahren wie die
Swissair sie verwendet hatte. Ebenso wurden die gleichen Hilfsmittel verwendet und
die gleiche Anzahl von Simulatorlektionen durchgeführt.
Während des Jahres 1996 nahmen 64 Piloten der Crossair an einem Umschulungskurs
auf das Flugzeugmuster MD 80 teil. Acht Teilnehmer – darunter auch der Kommandant
der Unfallmaschine – konnten die geforderten Leistungen nicht erbringen und bestanden
den Umschulungskurs nicht.
1.17.1.8 Regelung bezüglich Besatzungszeiten und nebenberuflichen Tätigkeiten
Nebenamtliche Tätigkeiten von Flugbesatzungsmitgliedern wurden im Unfallzeitpunkt
über den Gesamtarbeitsvertrag (GAV), den das Flugbetriebsunternehmen mit der Pilotengewerkschaft
Crossair Cockpit Personnel (CCP) im Jahre 2000 abgeschlossen hatte,
geregelt.
Für den Unfallflug sind folgende Bestimmungen des CCP GAV 2000 von Bedeutung:
• Art. 21.5: „Die Annahme öffentlicher Ämter ist der Crossair zu melden. Nebenbeschäftigungen
mit Erwerbszweck dürfen die Interessen der Crossair nicht beeinträchtigen
und unterstehen der Meldepflicht.“
• Art. 21.6: „ Die nachstehend genannten ausserdienstlichen Tätigkeiten bedürfen der
schriftlichen Einwilligung von Crossair:
• Linienflüge, Rundflüge, Charter- und Taxiflüge bei einem anderen Flugbetriebsunternehmen.
• Fluglehrerdienst im Rahmen einer Flugschule oder einer Flugzeug-
Verkaufsorganisation.
• Einsätze für die Rettungsflugwacht.“
Ferner hielt die flight duty regulations im operations manual part A (OM A) unter Kapitel
7 Artikel 7.1.1. fest, dass sämtliche Flugtätigkeiten unter diese Regelung fallen.
Es liegen keine Hinweise vor, dass der Kommandant um eine entsprechende schriftliche
Bewilligung nachgesucht hat oder eine solche von Crossair erhalten hat. Gemäss
Aussagen von Kadermitarbeitern des Flugbetriebsunternehmens war die Fluglehrertätigkeit
des Kommandanten bekannt. Eine Koordination der Einsatzzeiten und eine unternehmensübergreifende
Kontrolle der Einsatz- und Ruhezeiten fanden nicht statt.
1.17.1.9 Vorschriften bezüglich Sichtreferenzen bei Non Precision Approaches
Im operation manual part A (OM A) sind die relevanten Grundlagen für den Flugbetrieb
festgelegt. Zum Unfallzeitpunkt galten unter anderem die folgenden Vorschriften:
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 90 von 152
Zitat:
„Chapter 8A, Operating Procedures
8.1.3.2.2 Landing at Aerodromes with published Non-Precision Approach
Procedures
No Pilot may continue an approach below MDA (MDH) unless one of the following visual
references for the intended runway is distinctly visible to and identifiable by the pilot:
• Elements of the Approach Lights System
• Threshold
• Threshold marking
• Threshold lights
• Threshold identification lights
• Visual glide slope indicator
• Touchdown zone or touchdown zone markings
• Touchdown zone lights
• Runway edge lights
• Other visual reference as published in the OM C (Route Manual).
8.4.7.4.10 Pilot not flying
The pilot not flying (PNF) shall continuously monitor the approach, give every possible
help and keep the basic and other flight/navigation instruments under careful check,
including also momentary crosschecks of most important indications on both pilots instrument
panel. He shall operate and set the aeroplane equipment in accordance with
CROSSAIR procedures and must call the PF attention to:
• Significant deviations from prescribed regulations and procedures
• Abnormal deviations from the approach flight path, prescribed aeroplane configurations,
speeds, altitude and rate of descent
• Obvious deviations on the instruments
• DH, DA or MDA etc. by calling out "minimum"
• Approach lights, runway in sight
• If G/A is based on timing, when the stipulated time has elapsed
8.4.7.4.15.2 Co-operation on Changeover to Visual Flying
When ground contact is expected to be obtained, the PNF shall divide his attention between
the flight instruments and look-out. When the approach lights (or runway or
runway-lights) are clearly in sight and the attitude of the aeroplane can safely be determined
with reference to the ground, he shall tell the PF, e.g. "runway in sight".
From this point, the PF will fly mainly by visual reference and make only quick crosschecks
of his instruments. During that phase the PNF will monitor his instruments
closely and call deviation to the attention of the PF until flare-out.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 91 von 152
8.4.7.5.2 Visual Part of Final Approach and Landing
8.4.7.5.2.1 Definition
During this phase of flight all directional and bank information is entirely obtained from
visual ground clues such as the lighting system or the runway texture and where instruments
are used only for quick-glance reference to check speed and attitude/glide
path.
8.4.7.5.2.4 Glide Path
If terrain clearance permits, the visual final must be arranged so as to follow the normal
glide path of 2.5 deg to 3 deg in order to provide a safe descent and a good starting
point for landing. Descending rapidly to the normal glide path or even diving below
the normal glide path for obtaining a closer visual guidance of the ground or the approach
lights is considered unsafe and must be avoided.
In some weather conditions visual illusions can lead to dangerous deviations from the
nominal glide path. Therefore it is essential for the PNF to monitor his instruments and
call out any deviation. (…)
8.4.7.5.2.6 Use of VASI/PAPI
The glide path defined by a standard VASI/PAPI shall be closely followed as a visual
reference down to the height defined in OM C (Route Manual).
8.4.7.4.19.4 Go Around
A G/A shall immediately be executed by the commander at anytime:
• If APPR WARN is displayed on the HGS combiner unless sufficent visual reference is
available for performing an unguided landing. A G/A shall immediately be executed
by the commander at DH/DA
• If no or not enough visual guidance to continue is available
• If visual guidance is obtained but the aeroplane is in a position not permitting a safe
landing (not stabilised, etc.)”
Ende Zitat
1.17.1.10 Localizer DME Anflug auf Piste 03 in Lugano (heute IGS approach Piste 01)
Die Berechtigung, den Flugplatz Lugano anzufliegen, wurde im Rahmen einer zusätzlichen
speziellen Ausbildung, einer sogenannten airport qualification, erlangt. Gemäss
dem Schweizer Luftfahrthandbuch AIP ist diese Berechtigung für die jeweilige ICAOFlugzeugkategorie
gültig. Innerhalb der Crossair war die airport qualification flugzeugbezogen.
Während seiner langjährigen Tätigkeit auf der Saab 340 verfügte der Kommandant
des Unfallflugzeuges über die airport qualification für Lugano auf diesem
Flugzeug.
Das Schweizer Luftfahrthandbuch AIP bzw. das Crossair route manual (OM C) von Jeppesen
halten für den Anflug unter anderem folgendes fest:
• Die veröffentlichten Höhen bei einer Schrägdistanz (slant range – SR) zu ILU von
4.5 NM und 3.0 NM sind strikte einzuhalten.
• Nach Überflug des missed approach points (MAP) ist Richtung Piste weiter zu fliegen,
wobei Sicht auf den Boden vorhanden sein muss („maintain visual ground contact“).
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 92 von 152
• Die Distanz vom MAP bis zur Piste beträgt 1.5 NM und es ist möglich, dass die Piste
noch nicht sichtbar ist, wenn man sich beim MAP befindet.
• Der Leitstrahl des localizer liegt in der Pistenachse. Für den Endanflug ist dem precision
approach path indicator (PAPI) zu folgen.
• Der Anflug ist nicht im Anflugmode (approach mode) sondern im localizer mode zusammen
mit einem vertical mode zu fliegen.
Die Verfahrensvorgabe zum localizer DME approach RWY 03 Lugano im pilots information
handbook (PIH) zum Saab 340 der Crossair sieht vor, dass der Pilot mit dem Autopiloten
im „NAV mode only“ (nur im Navigationsmode) dem localizer und im V/S mode
dem Gleitweg von 6.65° zu folgen hat. Bei 3 NM DME ILU und einer Höhe von 3050 ft
QNH wird empfohlen, den Gleitweg zu unterfliegen, um die Gleitpfadreferenz des precision
approach path indicator (PAPI) anzusteuern. Falls beim Erreichen der Mindesthöhe
für den Anflug (MDA) der PAPI nicht sichtbar ist, muss auf der MDA horizontal
weitergeflogen werden. Spätestens beim missed approach point (MAP), 1.5 NM DME
ILU, muss der Pilot über visuelle Bezugspunkte am Boden verfügen, wenn er unter die
Mindesthöhe für den Anflug (MDA) sinken will: looks out for visual references „ground
contact“. Sind keine solchen visuellen Bezugspunkte vorhanden, muss ein Durchstart
eingeleitet werden (vgl. Anhang 6).
Gemäss Aussagen von Besatzungen sei es auch Praxis gewesen, die MDA bei lediglich
„ground contact“, d.h. ohne Sicht auf den PAPI, vor dem MAP zu verlassen und auf eine
Radarhöhe von mindestens 300 ft RA über dem See abzusinken. Dann wurde jeweils
horizontal weitergeflogen, bis der PAPI schliesslich in Sicht kam. Dieses Verfahren
ist in den Flugbetriebsvorschriften der Crossair nirgends erwähnt.
1.17.1.11 Prozessabläufe im Flugzeugunterhalt
1.17.1.11.1Höhenmesser Wartung
Es zeigte sich, dass die periodischen Kontrollen des Höhenmesssystems (zwei air data
computer und ein standby altimeter) nicht vorschriftsgemäss ausgeführt und nicht dokumentiert
wurden.
Der ausführende Mechaniker dieser checks besass zur Durchführung dieser Arbeiten
keine Lizenz des BAZL und keine entsprechende Berechtigung des Flugbetriebsunternehmens.
1.17.1.11.2DFDR Kalibrierung
Die entsprechenden Daten wurden vorschriftsgemäss periodisch aus dem Flugdatenschreiber
ausgelesen. Diese Aufzeichnungen zeigten Beanstandungen für folgende Parameter:
• elevator left hand and right hand
• aileron left hand and right hand
• rudder
• spoiler left hand
Es wurden keine workorder zur Behebung derselben gefunden. Die Aufzeichnungen
des Unfallfluges zeigten, mit Ausnahme der spoiler left hand, die gleichen Beanstandungen.
Für Kalibrierarbeiten am Flugzeug fehlten die Protokollblätter. Es liess sich daher nicht
zurückverfolgen, ob Einstellungen vorgenommen wurden.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 93 von 152
1.17.1.11.3APU Trouble Shooting
Bei der Durchsicht der technischen Unterlagen wurde festgestellt, dass die APU seit der
Inbetriebnahme des Flugzeuges eine überdurchschnittlich hohe Störanfälligkeit aufwies.
Beim Unfallflug war diese Beanstandung in der DDL mit der Feststellung, dass die
APU erst beim zweiten Versuch startet, festgehalten. Die meisten Störungen betrafen
„auto shut down“ während dem Betrieb und Startprobleme. Ausgewechselte Komponenten
brachten immer nur kurzfristigen Erfolg. Dazwischen wurde auch dreimal erfolglos
die ganze APU gewechselt. Insgesamt wurde in der Lebenszeit des Flugzeuges
die APU mehr als 100 Mal beanstandet.
Es existierte wohl eine reliability list einzelner Komponenten, jedoch fehlte eine Zuverlässigkeitsangabe
für die ganze Einheit.
Maintenance Unterlagen des Flugbetriebes zeigten, dass das Problem bei allen mit dieser
APU ausgerüsteten AVRO RJ 85/100 bestand.
Beim Unfallflug, während dem Sinkflug, war ebenfalls ein zweiter Startversuch der APU
notwendig.
1.17.2 Aufsichtsbehörde
1.17.2.1 Allgemeines
Wie in den meisten Staaten basieren die Gesetze und Verordnungen der Luftfahrt auch
in der Schweiz auf den Empfehlungen der Internationalen Zivilluftfahrtorganisation (International
Civil Aviation Organisation – ICAO). Für gewerbsmässige Flugbetriebsunternehmen
gelten zudem die Anforderungen und Regeln der Joint Aviation Authorities
(JAA), die in der Schweizer Gesetzgebung verankert wurden.
Gemäss Luftfahrtgesetz hat der Bundesrat die Aufsicht über die Luftfahrt im gesamten
Gebiet der Schweizerischen Eidgenossenschaft. Die unmittelbare Aufsicht über die zivile
Luftfahrt obliegt dem Bundesamt für Zivilluftfahrt (BAZL), das ein Amt des Eidgenössischen
Departements für Umwelt, Verkehr, Energie und Kommunikation (UVEK) darstellt.
1.17.2.2 Struktur
Das Bundesamt für Zivilluftfahrt (BAZL) verfügte zum Zeitpunkt des Unfalls über eine
Belegschaft von ungefähr 150 Mitarbeiterinnen und Mitarbeitern. Mit Beginn des Jahres
2001 wurde ein Reorganisationsprojekt umgesetzt, welches eine prozessorientierte
Struktur des Amtes zur Folge hatte. So liessen sich die Einheiten des BAZL in drei Bereiche
gliedern: Der erste Bereich bestand aus dem operationellen Geschäft und wurde
von sieben Prozessteams gewährleistet. Den zweiten Bereich bildeten die Kompetenzzentren,
die gewissermassen den Prozessen unterlegt waren. Die Mitarbeitenden dieser
Einheiten waren grundsätzlich in den Prozessen eingebunden, wo sie das spezielle Wissen
ihres Kompetenzzentrums zur Erarbeitung des jeweiligen Produkts einbrachten.
Den dritten Bereich stellte die Amtsleitung mit den unterstützenden Einheiten dar, welche
Querschnittsfunktionen erfüllten und das Funktionieren der Organisation sicherstellten.
Im Zusammenhang mit dem Unfall sind die folgenden Prozesse von Bedeutung:
• Prozess Infrastruktur-Planung (IP) – Mit dem Sachplan Infrastruktur der Luftfahrt
(SIL) betreute dieser Prozess den zentralen Planungsrahmen für die Entwicklung der
zivilen Luftfahrt-Infrastruktur der Schweiz. Zu den Konzepten und Planungsgrundlagen
gehörten auch der Radionavigationsplan und die Radiofrequenzpläne sowie die
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 94 von 152
Bewirtschaftung der Luftraumstruktur. IP war weiter zuständig für Flugsicherungs-
Regelungen und somit auch für die Aufsicht über die schweizerische Flugsicherungsgesellschaft
skyguide, für die Festlegung der Luftfahrt-Gebühren sowie für die
sicherheitsrelevanten Luftfahrtinformationen.
• Prozess Flugausbildung und Lizenzen (FA) – Für den lizenzrelevanten Bereich der
fliegerischen Aus- und Weiterbildung definierte der Prozess die Standards und besorgte
die Auswahl, Ausbildung und Ernennung von Sachverständigen. Weiter betreute
er die Zertifizierung von Ausbildungseinrichtungen und Trainingsgeräten (Simulatoren).
• Prozess Luftverkehrsbetriebe (LV) – Dieser Prozess war für die Zulassung und die
betriebliche Aufsicht von Flugbetrieben verantwortlich. Dazu gehörten ebenfalls die
operationelle Überwachung des Flugmaterials und die „SAFA ramp checks“, in deren
Rahmen auf schweizerischen Flugplätzen ausländische Luftfahrzeuge und Besatzungen
stichprobenartig überprüft wurden. Eine entsprechende Organisation für
schweizerische Luftfahrzeuge war zum Unfallzeitpunkt geplant, aber noch nicht eingeführt.
Als Aufsichtsbehörde ist das BAZL u.a. zuständig für die formelle Genehmigung aller
An- und Abflugverfahren. Das Bundesamt war in den Gremien zur Evaluation alternativer
An- und Abflugverfahren vertreten, um den Forderungen Deutschlands nach Reduktion
der Benützung süddeutschen Luftraumes nachzukommen.
1.17.2.3 Sicherheits-Audit durch die ICAO
Vom 1. bis 8. November 2000 führte die Internationale Zivlluftfahrtorganisation (ICAO)
im Rahmen ihres Universal Safety Oversight Audit Program ein Sicherheits-Audit des
BAZL durch. Der entsprechende Schlussbericht, der von der ICAO im Oktober 2001
veröffentlicht wurde, hält bezüglich der betrieblichen Aufsicht unter anderem fest:
„With the crucial shortage of technical expertise necessary to conduct the core functions
of certification of operators, surveillance activities are very limited. FOCA relies
mainly on operators and other entities to ensure oversight of aviation activities. However,
no system for the control and supervision of these tasks and functions pertaining
to the State’s safety oversight responsibilities has been established. The Flight Operations
Section has established a programme for supervisory and technical control of
persons within an operator’s organization performing oversight/check airmen duties,
but this oversight is not yet conducted due to the lack of operations inspectors capable
of undertaking the task.”
“FOCA has not established an audit schedule of Swiss air operators. Subsequent to the
issue of an AOC, only a few operations inspections on some commercial air transport
operators are conducted. The frequency of these inspections is low due to the limited
human resources available to the Flight Operations Section and does not allow for the
completion of a surveillance programme of Swiss air operators. Flight operations is an
area where FOCA relies mainly on tasks performed by operators and on operators’
check airmen, and no system for the control of these tasks and functions pertaining to
the State’s safety responsibility is established. Without a substantial increase in the
number of adequately trained inspectors, the industry may become essentially selfregulating.”
Das BAZL informierte am 8. Dezember 2000 seine vorgesetzte Stelle, das Generalsekretariat
(GS) des Eidgenössischen Departements für Umwelt, Verkehr, Energie und
Kommunikation (UVEK), über den von der ICAO festgestellten Personalmangel im
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 95 von 152
technischen Bereich. Das GS UVEK ermöglichte es dem BAZL, unbefristet Personal einzustellen,
obwohl damals in der Bundesverwaltung ein Einstellungsstopp galt.
Der Bestand an Inspektoren des Bundesamtes für Zivilluftfahrt für die betrieblichen Belange
von Flugbetriebsunternehmen entwickelte sich von 6 Inspektoren am 31. Dezember
2000 wie folgt:
• 31. Dezember 2001: 8 Inspektoren
• 31. Dezember 2002: 11 Inspektoren
1.17.2.4 Vorschriften bezüglich Einsatzzeiten
JAR-OPS 1 hatte bei Abfassung dieses Berichts noch keine flight and duty time limitations
and rest requirements im subpart Q definiert. Im Hinblick auf die Besatzungszeiten
waren deshalb zum Zeitpunkt des Unfalls die Bestimmungen von Ziffer 4.7 der Verordnung
über die Betriebsregeln im gewerbsmässigen Luftverkehr (VBR I) gültig. Im operations
manual part A (OM A), Kapitel 7 wurden diese gesetzlichen Auflagen beschrieben,
allenfalls im Einzelfall ergänzt und schliesslich vom BAZL genehmigt.
Für den Unfallflug sind folgende Bestimmungen der VBR I von Bedeutung:
• 4.7.1.3: „Besatzungszeiten, die bei anderen Flugbetriebsunternehmen aufgelaufen
sind, müssen in die Berechnung einbezogen werden.“
• 4.7.1.4: „Für die Einhaltung der Besatzungszeiten sind sowohl der Flugbetriebsunternehmer
als auch das Besatzungsmitglied verantwortlich.“
• 4.7.3.7: „Die Dauer einer haupt- oder nebenamtlichen Tätigkeit in den letzten 10
Tagen vor einem Flug gilt als Flugdienstzeit.“
• 4.7.3.1.1: „Unter Vorbehalt der Ziffern 4.7.1.2, 4.7.3.1.2 und 4.7.3.2-4.7.3.10 werden
die Flugdienstzeiten der Flugbesatzungsmitglieder wie folgt begrenzt:“ Bei einer
Mindestflugbesatzung gemäss AFM von 2 Piloten und maximal 4 Landungen darf die
Flugdienstzeit maximal 14 Stunden betragen.
• 4.7.4.1: „Zwischen zwei Flugdienstzeiten muss jedes Besatzungsmitglied über eine
Ruhezeit verfügen, die der Flugdienstzeit unmittelbar vorauszugehen hat. Die Ruhezeit
berechnet sich nach der längeren der beiden Flugdienstzeiten und beträgt unter
Vorbehalt der Ziffern 4.7.1.2 und 4.7.3.4 wenigstens:“ 12 Stunden bei einer Flugdienstzeit
von über 14 Stunden.
1.17.2.5 Verhältnis der Crossair zur Aufsichtsbehörde
Die Beziehungen zwischen dem BAZL und der Crossair waren vielschichtig. Bezüglich
des Unfallgeschehens sind folgende Punkte von Bedeutung:
• Das BAZL hat überprüft, ob die Ausbildungsrichtlinien der Crossair bezüglich crew
resource management (CRM) den JAR genügten. Die Wirksamkeit bzw. Umsetzung
der Ausbildung im Flugbetrieb wurde durch das BAZL nicht überwacht.
• Audits des Flugbetriebs der Crossair waren bis zum Unfallzeitpunkt nicht durchgeführt
worden. Ein erstes luftverkehrsbetriebliches Audit fand am 28. August 2002
statt, nachdem der Name der Crossair auf Swiss International Air Lines Ltd. gewechselt
hatte.
• Den Mitarbeitern des Prozesses LV sind gemäss eigenen Angaben die dem Flugbetrieb
der Crossair zu Grunde liegenden Papiere, nicht aber die wirkliche Praxis bekannt.
• Mehrere Mitarbeiter des BAZL waren teilzeitlich bei Crossair als Piloten beschäftigt.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 96 von 152
• Gemäss den Aussagen von Mitarbeitern des BAZL ist zwischen dem Unfall von Crossair
Flugnummer CRX 498 am 10. Januar 2000 und dem Unfall von Crossair Flugnummer
CRX 3597 am 24. November 2001 im Prozess Luftverkehrsbetriebe (LV)
prinzipiell nichts verändert worden.
• Zwei bis drei Mal pro Jahr fanden sog. Koordinationsmeetings statt, an denen von
Seiten der Crossair leitende Angestellte der Bereiche flight operations, maintenance,
quality management und flight safety teilnahmen. Das BAZL wurde jeweils durch die
Verantwortlichen aus den für den Flugbetrieb, die Luftverkehrsbetriebe, den Unterhalt
und die Lufttüchtigkeit zuständigen Abteilungen vertreten. Wie die Protokolle
dieser Treffen aus den Jahren 1996 bis 2001 belegen, waren Leistungen von Besatzungsmitgliedern
oder Pilotenqualifikationen nie ein Gesprächsthema.
• Es liegen keine Hinweise vor, dass die Tätigkeit der bei der Crossair angestellten
Experten, welche im Auftrag des BAZL Musterberechtigungen und Leistungsüberprüfungen
wie line und route checks vorzunehmen hatten, vom BAZL überprüft wurde.
• Die Schwierigkeiten und Misserfolge, die bei den Umschulungskursen auf das Flugzeugmuster
MD 80 auftraten, waren dem BAZL nicht bekannt.
1.17.3 Flugschule Horizon Swiss Flight Academy
Die Flugschule Horizon Swiss Flight Academy wurde 1979 gegründet und besass die
Zulassung als flight training organization (FTO) nach den Vorgaben von JAR-FCL. Sie
bot Ausbildungen zum Erwerb der Lizenzen von Privatpiloten (PPL), Berufspiloten (CPL)
und Verkehrspiloten (ATPL) an. Das Unternehmen betrieb zum Zeitpunkt des Unfalls
Flugzeuge der Baumuster Katana DV 20, Piper Archer und Piper Seneca.
Zum Zeitpunkt des Unfalls war in älteren Arbeitsverträgen, wie sie der Kommandant
der Unfallmaschine besass, die Koordination der Ausbildungstätigkeit bei der Horizon
Swiss Flight Academy mit fliegerischen Tätigkeiten in anderen Unternehmen nicht geregelt.
Gemäss eigenen Angaben machte die Flugschule die bei ihr tätigen Instruktoren
jedoch mehrfach auf deren Eigenverantwortung in Bezug auf die Einhaltung von Besatzungszeiten
aufmerksam.
1.17.4 Flugsicherung
1.17.4.1 Allgemeines
Seit 1. Januar 2001 sind die militärischen und zivilen Flugsicherungsdienste in einer
einzigen Instanz vereinigt, die den gesamten schweizerischen Luftraum bewirtschaftet.
Um diesem in Europa einzigartigen Zusammenschluss Ausdruck zu verleihen, änderte
die Gesellschaft Swisscontrol ihren Namen und nannte sich von nun an skyguide. Das
Unternehmen ist seit 1996 vom Bund finanziell unabhängig als privatrechtliche Aktiengesellschaft
organisiert.
Zur Bewirtschaftung des schweizerischen und des an die Schweiz delegierten ausländischen
Luftraums gehört insbesondere die Organisation und Durchführung der Flugverkehrsleitung.
1.17.4.2 Anflugleitstelle
Für An- und Abflüge erbringt die skyguide diesen Dienst in der Anflugleitstelle. Dabei
werden anfliegende Luftfahrzeuge, je nach Verkehrsaufkommen, in bis zu drei verschiedenen
Sektoren geführt (Anflugsektor Ost, Anflugsektor West, Final Sektor), abSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 97 von 152
fliegende Flugzeuge werden an einem einzigen Sektor geführt (Abflugsektor). Zusätzlich
steht ein Koordinator zur Unterstützung der genannten Sektoren zur Verfügung.
Gemäss Sektorbelegungsplan der skyguide hätten zum Zeitpunkt des Unfalles (21:07
UTC) in der Anflugleitstelle noch 4 Arbeitspositionen besetzt sein müssen. Tatsächlich
war eine Arbeitsposition besetzt.
1.17.4.3 Platzverkehrsleitstelle
Von der Platzverkehrsleitstelle, die sich in der Turmkanzel befindet, werden von der
skyguide Luftfahrzeuge geführt, die starten oder landen oder die am Boden Pisten
kreuzen müssen. Zu diesem Zweck bedient die skyguide, je nach Verkehrsaufkommen,
an bis zu vier verschiedenen Arbeitsplätzen die vier Leitstellen ADC 1, ADC 2, GRO und
clearance delivery (CLD). Ein Dienstleiter (DL) ist für die Überwachung des Dienstbetriebes
in der Turmkanzel und in der Anflugleitstelle verantwortlich.
Gemäss Sektorbelegungsplan der skyguide hätten zum Zeitpunkt des Unfalles in der
Turmkanzel noch 4 Arbeitspositionen besetzt sein müssen. Tatsächlich waren 2 Arbeitspositionen
besetzt. Die Dienstleiterposition war gemäss Sektorbelegungsplan bis
22:00 UTC ausgewiesen.
1.17.5 Flughafen Zürich AG (Unique)
1.17.5.1 Allgemeines
Die Flughafen Zürich AG (Unique) ist Konzessionärin des Bundes und betreibt den Flughafen
Zürich. In dieser Funktion nimmt sie insbesondere folgende flugbetriebsbezogene
Aufgaben wahr: Vorfeldleitstelle (apron control), Vorfeldaufsicht (apron service),
Flugplatzleitung (duty office), Sicherheitszonenschutz und kantonale Meldestelle für
Hindernisbegrenzungen, Sicherheit (security) sowie Feuerwehr und Sanität (safety),
Unterhaltsdienste einschliesslich Winterdienst, Umweltschutz und Fluglärmmanagement.
Gegenüber der skyguide ist der duty officer der Unique Ansprechpartner bezüglich Abweichungen
vom Pistenbenützungskonzept.
1.17.5.2 Vorfeldverkehrsleitung – Apron Control
Für die Führung der Luftfahrzeuge und Fahrzeuge am Boden im Bereich des Vorfeldes,
auf den Rollwegen südlich der Piste 28 und östlich der Piste 16, auf gewissen Rollwegabschnitten
nördlich der Piste 28 im Bereich des neuen dock midfield und im Bereich
der Rollwege "Romeo" und "Romeo 8" sowie der "Whiskey"-Standplätze ist die Flughafen
Zürich AG (Unique) zuständig.
1.17.5.3 Rolle von Unique bei der Umsetzung des Staatsvertrages Schweiz-Deutschland
Im Hinblick auf den angestrebten Abschluss eines Staatsvertrages zwischen der
Schweiz und Deutschland zur Regelung der Benützung des süddeutschen Luftraumes
für An- und Abflüge zum und vom Flughafen Zürich-Kloten wurden zu Beginn des Jahres
2001 unter der Leitung der Flughafen Zürich AG (Unique) zwei Kommissionen –
eine Arbeitsgruppe und eine Steuergruppe – ins Leben gerufen. Diese beiden Gremien
befassten sich in den folgenden Monaten mit den Konsequenzen auf den Flugbetrieb.
Der Vorsitz in beiden Gremien lag jeweils bei Mitarbeitern der Unique. Ausserdem war
in beiden Gremien die Geschäftsleitung von Swissair, skyguide und BAZL, zum Teil mit
zusätzlichen Beratern, vertreten.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 98 von 152
Ein wichtiger Teil der in Kraft gesetzten vorgezogenen Massnahmen zum erwähnten
Staatsvertrag bildete die Auflage, dass sofort nach Abschluss dieses Vertrages Anflüge
jeweils ab 22:00 LT bis 06:00 LT auf die Piste 28 zu erfolgen hätten. Dies unter der
Voraussetzung, dass die aktuellen Wetterbedingungen einen Anflug gemäss den Minima
des Schweizer Luftfahrthandbuches AIP zuliessen. Die vorgezogenen Massnahmen
traten am 19. Oktober 2001 in Kraft.
Anlässlich der erwähnten Sitzungen zur Erarbeitung des Pistenbenützungskonzeptes,
insbesondere bezüglich der Anflüge auf die Piste 28, war die Zweckmässigkeit resp.
Qualität des zur Anwendung vorgesehenen standard VOR/DME approach 28 kein Thema.
Die einzigen dokumentierten Feststellungen betrafen die Tatsache, dass es sich
dabei um einen non precision approach handle, der für grössere Flugzeugtypen kritisch
sein könnte. Insbesondere wurde die Frage einer eventuellen Erhöhung der Anflugminima
nicht diskutiert.
1.17.5.4 Einfluss der Unique auf die Verkehrsabwicklung
Nach dem Luftfahrtgesetz hat der Flugplatzhalter dem BAZL das Betriebsreglement zur
Genehmigung zu unterbreiten. Die von Unique im Hinblick auf den abzuschliessenden
Staatsvertrag mit Deutschland beantragte Änderung dieses Reglementes wurde vom
Bundesamt bezüglich der erwähnten Anflüge auf die Piste 28 am 18. Oktober 2001 genehmigt.
Somit oblag es grundsätzlich der airport authority der Unique, die Einhaltung des Pistenbenützungskonzeptes
(PBK) zu überwachen. Für die Umsetzung des PBK dagegen
war die skyguide, als für die Durchführung der Flugsicherung verantwortliches Unternehmen,
zuständig. Die skyguide war verpflichtet, bei einer gewünschten Abweichung
vom PBK bei der airport authority (duty officer) der Unique eine Einwilligung einzuholen.
Diese Struktur führte dazu, dass die tatsächlichen Möglichkeiten der skyguide, Startund
Landepisten nach rein betrieblichen Kriterien festzulegen, erschwert waren.
Der standard VOR/DME approach 28 wurde bis zum Inkrafttreten der Übergangsbestimmungen
zum Staatsvertrag am 19. Oktober 2001 nur sporadisch, bei ausgeprägten
Westwindlagen, von der Flugsicherung in Betrieb genommen.
1.17.6 MeteoSchweiz
1.17.6.1 Allgemeines
MeteoSchweiz ist ein Bundesamt, das dem Vorsteher des Eidgenössischen Departementes
des Innern (EDI) direkt unterstellt ist. Gemäss dem Gesetz über Klimatologie
und Meteorologie vom 18.6.1999 sind MeteoSchweiz verschiedene hoheitliche Aufgaben
zugewiesen. Unter anderem ist MeteoSchweiz verpflichtet, meteorologische Informationen
für den Flugbetrieb und die Flugsicherheit auf schweizerischem Gebiet bereitzustellen.
Gemäss der Verordnung des Bundesrats über den Flugsicherungsdienst (VFSD) erbringt
MeteoSchweiz den zivilen Flugwetterdienst und ist die meteorological authority
im Sinne von ICAO, Annex 3. Das Eidg. Departement für Umwelt, Verkehr, Energie und
Kommunikation (UVEK) regelt im Einvernehmen mit dem EDI die Einzelheiten.
Die genauere Umschreibung der Aufgaben von MeteoSchweiz für die Luftfahrt ist in der
Verordnung des UVEK über den zivilen Flugwetterdienst enthalten.
Die Aufsicht nimmt das BAZL wahr.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 99 von 152
1.17.6.2 Prozess Flugwetter
Seit der Reorganisation von 1998 hat MeteoSchweiz prozessorientierte Strukturen. Den
drei Bereichen Wetter, Klima und Unterstützung sind ergänzend verschiedene Kompetenzzentren
und Koordinationsorgane überlagert. Der Prozess Flugwetter ist im Bereich
Wetter angesiedelt.
Der Prozess Flugwetter erbringt den Flugwetterdienst für das ganze Gebiet der Schweiz
gemäss den Normen und Empfehlungen der WMO (World Meteorological Organization)
und der ICAO.
1.17.6.3 Flugwetterdienst auf dem Flughafen Zürich
Die Wetterdienstaufgaben auf dem Flughafen Zürich werden durch einen Beratungsund
einen Beobachtungsdienst wahrgenommen. Die Beratungszentrale im Operationszentrum
ist von 04:45 LT bis 22:15 LT besetzt, die Beobachtungsstation ist während
24 Stunden besetzt.
Die wichtigsten Aufgaben des Beratungsdienstes sind:
• Bereitstellung der meteorologischen Unterlagen für die Flugplanung
• Persönliche Beratungen
• Ausgabe von Vorhersagen für die Luftfahrt für die ganze Schweiz (GAMET)
• Ausgabe von Warnungen für die ganze Schweiz (SIGMET, AIRMET)
• Ausgabe von lokalen Warnungen für den Flughafen (Sturm, Blitz, Inversionen,
Windscherungen)
Aufgabe des Beobachtungsdienstes ist die permanente Überwachung des Wettergeschehens
auf dem Flughafen Zürich. Alle 30 Minuten werden routinemässig Wettermeldungen
im METAR- und im QAM-Code herausgegeben. Bei signifikanten Änderungen
zwischen zwei Beobachtungsterminen wird eine flughafeninterne Spezialmeldung erstellt
und weitergeleitet.
Die Beobachtungsstation befindet sich im Nordteil des Flughafens im Bereich der Pistenschwellen
RWY 14 und RWY 16. Die Erfassung der Wetterparameter erfolgt durch
visuelle Beobachtung und durch Messinstrumente, die auf dem Flughafengebiet und in
der näheren Umgebung installiert sind. Neben konventionellen Messinstrumenten
(Thermometer, Hygrometer, Barometer und Windmesser) werden zusätzlich folgende
Messgeräte eingesetzt:
• Transmissometer für die Bestimmung der Pistensicht (je drei Geräte entlang der
Hauptlandepisten 14 und 16, zwei Geräte entlang der Piste 28)
• Ceilometer für die Bestimmung der Wolkenbasis (je ein Gerät im Bereich der Pisten
14 und 16, middle marker 16, outer marker 16 und bei Bassersdorf, ca. 1 km südlich
der Pistenachse 28)
• Blitzdetektionsanlage
• Inversionsmesskette AMETIS1 zur Detektion von Inversionen und damit verbundenen
langsam ändernden Windscherungen (Sensoren auf umliegenden Hügelkuppen)
• Wolkenscheinwerfer und TV-Kameras
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 100 von 152
1.18 Zusätzliche Angaben
1.18.1 Trainingsgeräte
Die Crossair besass keinen eigenen Flugsimulator für den Typ AVRO 146-RJ100. Trainiert
wurde auf RJ 100-Simulatoren von Dritten. Folgende Simulatoren wurden bei der
Crossair zur Pilotenschulung eingesetzt:
• RJ 100-Simulator in Berlin, zertifiziert gemäss JAR-STD 1A Level DG, konnte bei Bedarf
mit dem navigation management system GNS-X ausgerüstet werden.
• RJ 100-Simulator in Istanbul, zertifiziert gemäss JAR-STD 1A Level D (DGCA) bzw.
Level C (BAZL). Das GNS-X war fest installiert.
• RJ 85/100-Simulator in Brüssel, zertifiziert gemäss JAR-STD 1A Level DG. Dieser Simulator
besass ein GNS-X.
• RJ 100-Simulator von BAe in Woodford. Dieser Simulator wurde nach den USA verkauft.
Ein computer based training (CBT), welches die Funktionen der Flugzeugsysteme und
die Leistungsdaten (performance) abhandelte, war bei der Crosscat vorhanden.
Weiter besass die Crossair ein CBT ohne interaktive Funktion für das FMS GNLU 910,
welches in den AVRO RJ 100 Mk II installiert war.
In den 16 Flugzeugen RJ 85/100 (HB-IX*) fand das GNS-X Navigationssystem Verwendung,
in den vier Flugzeugen RJ 100 Mk II (HB-IY*) das modernere Collins GNLU 910.
Der Kommandant und der Copilot der HB-IXM wurden hauptsächlich auf dem Simulator
des Turkish Airlines flight training center in Istanbul ausgebildet. In diesem Trainingsgerät
war das GNS-X installiert, welches der Konfiguration des Unfallflugzeuges entsprach.
1.18.2 Eintragung von Flughindernissen in Anflugkarten
In der Anflugkarte 13-2 vom 10. November 2000 des Jeppesen route manual, welche
die Flugbesatzung verwendete, waren keine Flughindernisse im Anflugsektor der Piste
28 eingetragen.
In der Anflugkarte LSZH AD 2.24.10.7-1 des Schweizer Luftfahrthandbuches AIP, die
den standard VOR/DME approach 28 beschreibt, sind zwei befeuerte Flughindernisse
mit den üblichen Symbolen im Anflugsektor verzeichnet (vgl. Anhänge 7 und 8).
1.18.3 Relevante Sicherheitsempfehlungen aus früheren Untersuchungen
1.18.3.1 Einleitung
Die folgenden Sicherheitsempfehlungen aus früheren Untersuchungen des Büros für
Flugunfalluntersuchungen sprechen Problembereiche an, die in vergleichbarer Form
auch im vorliegenden Unfall von Crossair Flugnummer CRX 3597 aufgetreten sind.
1.18.3.2 Unfall Alitalia Flugnummer AZA 404 am Stadlerberg, Zürich
Am 14. November 1990 stürzte eine McDonnell Douglas DC 9 der Fluggesellschaft Alitalia
im Anflug auf die Piste 14 des Flughafens Zürich ab. Bei diesem Unfall kamen 46
Menschen ums Leben. Während des Anfluges verliess das Flugzeug wegen eines technischen
Defekts am Navigationssystem die zugewiesene Höhe von 4000 ft QNH vorzeitig
und kollidierte rund drei Minuten später mit dem Stadlerberg.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 101 von 152
Im Schlussbericht sprach das Büro für Flugunfalluntersuchungen unter anderem die
folgenden Sicherheitsempfehlungen aus:
Sicherheitsempfehlung Nr. 9
„Die Aufgaben der Flugsicherung sind mit dem Auftrag zur Warnung bei Unterschreiten
der Mindestsicherheitshöhe zu ergänzen. Zu diesem Zweck ist bei den Flugsicherungsstellen
ein Warnsystem einzurichten (analog dem in den USA verwendeten „minimum
safe altitude warning system“), das optisch und akustisch auf Höhenunterschreitungen
der Flugzeuge automatisch aufmerksam macht.“
Sicherheitsempfehlung Nr. 13
“Die Einrichtung von Arbeitsplatzmikrofonen mit Tonbandaufnahme an den Arbeitsplätzen
der Flugverkehrsleiter ist zu prüfen (analog Area mike des CVR im Cockpit der Flugzeuge).„
1.18.3.3 Unfall Crossair Flugnummer CRX 498 bei Nassenwil, Zürich
Am 10. Januar 2000 startete ein Flugzeug SAAB 340B der Fluggesellschaft Crossair
zum Linienflug nach Dresden. Zwei Minuten und 17 Sekunden später schlug die Maschine
nach dem Verlust der Kontrolle über die Fluglage auf einem Feld bei Nassenwil/
ZH auf.
Der Unfall betraf zwei Besatzungsmitglieder, die vor ihrer Tätigkeit in der Schweiz bei
ausländischen Flugbetriebsunternehmen geflogen waren. Bezüglich der Validierung von
Lizenzen aus Ländern mit unbekanntem Ausbildungslehrgang empfahl das Büro für
Flugunfalluntersuchungen:
„Der JAR-FCL proficiency check ist in jedem Fall durch einen Inspektor der Aufsichtsbehörde
abzunehmen. Dabei sind spezifisch die oben genannten Schwerpunkte zu überprüfen.
Dieser check soll unter keinen Umständen an ein Flugbetriebsunternehmen
(operator) delegiert werden, er kann aber Teil des operator proficiency checks sein.“
Der Unfall zeigte, dass sich die Besatzungsmiglieder nicht ideal ergänzt hatten. Das
BFU empfahl deshalb:
„Defizite im sprachlichen und operationellen Bereich sollen durch geeignetes und individuelles
Training behoben werden. Durch sorgfältiges crew pairing ist zu verhindern,
dass sich noch bestehende Defizite in einer Besatzung kumulieren.
Während der proficiency trainings sind die individuellen Schwierigkeiten der Kandidaten
durch geeignete Methoden zu adressieren (z. B. unusual attitude training, communication
training). Während der proficiency checks ist das Ergebnis dieses individuellen
Trainings zu überprüfen.“
1.19 Neue Untersuchungsmethoden
1.19.1 Analyse von Non Volatile Memories
1.19.1.1 Einleitung
Honeywell ist ein wesentlicher Lieferant für Avionik-Systeme des Avro 146 RJ 85/100.
Eine Anfrage bei dieser Firma ergab, dass der EFIS symbol generator, der digital air
data computer (DADC) und der digital flight guidance computer (DFGC) non volatile
memories enthält. Um zusätzliche Informationen zu erhalten, wurde angestrebt, die
folgenden circuit card assemblies (CCA) im Beisein eines Vertreters des BFU auszulesen.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 102 von 152
1.19.1.2 Digital Air Data Computer
Das circuit card assembly A7 umfasst die CPU und das non volatile memory, in welchem
Fehlermeldungen abgespeichert werden.
Die Auslesung ergab, dass weder während dem Unfallflug noch während einem der
neun vorangegangenen Flüge ein Fehler (failure) im DADC abgespeichert worden war.
1.19.1.3 EFIS Symbol Generator Unit
Das circuit card assembly A2 beinhaltet die symbol generator CPU und das non volatile
memory, in welchem Fehlermeldungen abgespeichert werden.
Es waren mehrere Fehler aufgezeichnet, welche offenbar während des Unfallgeschehens
im non volatile memory abgelegt worden sind. Für die Zeit vor dem Unfall wurde
von Honeywell die folgende Aussage gemacht:
“Thus, no Symbol Generator faults were recorded during the flight indicating a failure
that would contribute to displaying incorrect flight information to the crew at the time
of the crash”.
1.19.1.4 Digital Flight Guidance Computer
Die circuit card assemblies A3 und A18 umfassen je eine CPU und ein non volatile memory,
in denen Fehlermeldungen abgespeichert werden.
Gemäss den Aufzeichnungen des DFDR war der digital flight guidance computer
(DFGC) Nummer 2 während dem Unfallflug aktiv. Dieser Befund konnte mit den ausgelesenen
memory Daten bestätigt werden.
Während des Unfallfluges wurden zwischen dem Start in Berlin und dem ersten Kontakt
mit den Bäumen keine Fehler registriert.
Nach dem Kontakt mit den Bäumen wurden Ereignisse registriert, welche durch die
Verzögerung des Flugzeuges und später durch den einsetzenden Stromausfall verursacht
wurden. Die DFGC werden von der Bordbatterie unterstützt. Daher war es möglich,
dass im DFGC Ereignisse, welche den Stromausfall betrafen, registriert wurden.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 103 von 152
2 Analyse
2.1 Technische Aspekte
2.1.1 Flight Guidance System
2.1.1.1 Electronic Flight Instrument System
2.1.1.1.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
electronic flight instrument system (EFIS) nichts Auffälliges ergeben.
2.1.1.1.2 Verfügbarkeit während des Unfallfluges
Aufgrund der CVR-Aufzeichnungen kann davon ausgegangen werden, dass ursprünglich
beide Piloten den CRS selector auf dem EFIS control panel in der Stellung ‘LNAV’
hatten. Der CRS selector des Copiloten war bei der Bergung der Trümmer noch immer
in dieser Stellung. Derjenige des Kommandanten war in der OFF-Stellung. Wahrscheinlich
hat der Kommandant seinen CRS selector in die OFF-Stellung gebracht, nachdem
das Flugzeug auf dem VOR inbound course 275° KLO ausgerichtet war. Dies, um die
Menge der Daten auf seinem navigation display zu reduzieren (declutter).
Auf dem instrument panel des Kommandanten stand der EFIS Umschalter nach der
Bergung in der Stellung ‘NORM’, die Schutzkappe war intakt. Dies ist ein Hinweis, dass
beide EFIS symbol generator units funktioniert hatten.
Aus den CVR-Aufzeichnungen ergeben sich keine verbalen Hinweise über Probleme mit
dem electronic flight instrument system.
Die non volatile memories der beiden EFIS symbol generator units wurden durch den
Gerätehersteller ausgewertet. Man kam zum Schluss, dass keine Störungen registriert
waren, welche in der kritischen Phase des Unfallfluges zur Darstellung von inkorrekten
Fluginformationen hätten führen können.
2.1.1.2 Auto Flight System
2.1.1.2.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
auto flight system (AFS) nichts Auffälliges ergeben.
2.1.1.2.2 Verfügbarkeit während des Unfallfluges
Während den letzten 30 Minuten des Unfallfluges wurde das auto flight system zur
Führung des Flugzeuges ununterbrochen eingesetzt.
Für die laterale Führung arbeitete der Autopilot abwechslungsweise im LNAV1 mode,
im HDG SEL mode und im VORNAV1 mode. In der letzten Phase des Unfallfluges war
der VORNAV1 mode aktiv. Der letztgewählte VOR course betrug 275°. Die Auswertung
der DFDR-Daten ergab, dass die Steuerung mit dem Autopiloten in den genannten Betriebsarten
normal verlief.
Für die vertikale Führung arbeitete der Autopilot abwechslungsweise im vertical speed
mode und im altitude hold mode. In der letzten Phase des Unfallfluges war der vertical
speed mode aktiv. Die letztgewählte Sinkgeschwindigkeit betrug 1200 ft/min. Die Auswertung
der DFDR-Daten ergab, dass die Steuerung mit dem Autopiloten in den genannten
Betriebsarten normal verlief.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 104 von 152
Über FL235 war das autothrottle system im Mach mode, darunter immer im IAS mode.
Die letztgewählte Geschwindigkeit betrug 116 KIAS. Die Auswertung der DFDR-Daten
ergab, dass die Steuerung mit dem autothrottle system in den genannten Betriebsarten
normal verlief.
Um 21:06:34 UTC bekundete der Kommandant die Absicht, einen Durchstart einzuleiten.
Gleichzeitig wurde der Autopilot ausgeschaltet und auf dem CVR war das entsprechende
akustische Warnsignal (cavalery charge) zu hören. Zwei Sekunden später kam
es zum ersten Baumkontakt.
Das autothrottle system blieb bis zum Schluss der DFDR-Aufzeichnungen eingeschaltet
und im IAS mode. Dies ist ein Hinweis darauf, dass der TOGA pushbutton an den Leistungshebeln
nicht betätigt wurde.
Die Untersuchung des thrust rating panels (TRP) ergab, dass mit grosser Wahrscheinlichkeit
beim Aufprall mindestens eine Glühbirne im MCT pushbutton gebrannt hatte.
Dies ist ein weiterer Hinweis darauf, dass der TOGA pushbutton an den Leistungshebeln
nicht betätigt wurde.
Die Auswertung der non volatile memories der beiden digital flight guidance computer
ergab, dass während des Unfallfluges bis zum ersten Baumkontakt keine Fehler registriert
wurden. Nach dem Kontakt mit den Bäumen wurden Ereignisse registriert, welche
durch die Verzögerung des Flugzeuges und später durch den einsetzenden Stromausfall
verursacht wurden.
2.1.1.3 Navigation Management System
2.1.1.3.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
navigation management system (NMS) nichts Auffälliges ergeben.
2.1.1.3.2 Verfügbarkeit während des Unfallfluges
Während den letzten 30 Minuten des Unfallfluges wurde das navigation management
system (NMS) zweimal zur Führung des Flugzeuges mit dem Autopiloten eingesetzt
(FDR: LNAV1 mode). Das erste Mal wurde es auf einem track von ungefähr 220° nach
RILAX, das zweite Mal nach dem ZUE VOR verwendet.
Um 20:59:25 UTC informierte der Kommandant: “LNAV isch dine, das düemer dän
schnell mit em LNAV flüüge, detä...”. Es ist wahrscheinlich, dass er zu diesem Zeitpunkt
die Route ZUE, D178F, KLO*, KLO**, RW28 eingegeben hatte. KLO* und KLO**
sind durch den Piloten generierte Wegpunkte.
Um 21:00:06 UTC meldete der Kommandant: “LNAV isch engaged, da simer praktisch
druffe”. Zu diesem Zeitpunkt befand sich das Flugzeug auf der VOR-Standlinie mit dem
inbound course 125° ZUE. Es ist wahrscheinlich, dass der Kommandant in dieser Situation
mit dem Einschalten (engage) des LNAV mode auch die Funktion direct to ZUE aktivierte.
Der Anflug wurde bis um 21:04:15 UTC im LNAV mode fortgeführt, dem Zeitpunkt in
welchem der Autopilot das Flugzeug auf den inbound course 275° KLO steuerte (VOR
capture).
Die Auswertung der DFDR Daten ergab, dass die Steuerung mit dem Autopiloten im
LNAV1 mode normal verlief. Kurz vor dem Unfall arbeitete der Autopilot im VORNAV1
mode.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 105 von 152
Der CRS selector auf dem EFIS control panel des Kommandanten befand sich bei der
Bergung der Trümmer in der Stellung ‘OFF’. Es ist wahrscheinlich, dass der Kommandant
als 2nd course das VOR 2 oder 1 gewählt hatte. Dies ermöglichte ihm, die Führung
des Flugzeuges durch den Autopiloten entlang der VOR-Standlinie zu überwachen.
Bei der Bergung wurde der LNAV switch in der Position LNAV 1 vorgefunden. Es gibt
keine Hinweise, dass diese Stellung als Folge einer technischen Störung gewählt wurde.
Wahrscheinlicher ist, dass der Kommandant aus Gewohnheit den Schalter auf
LNAV1 gestellt hat, weil er pilot flying war.
2.1.2 Flugzeugsteuerung
Die DFDR Aufzeichnungen der primary flight controls, aileron, elevator und rudder waren
nicht auswertbar. Die DFDR Daten der secondary flight controls waren demgegenüber
gut auswertbar und bewegten sich aus betrieblicher Sicht im normalen Rahmen.
Die auf den Flugweg bezogenen Daten (wie zum Beispiel: altitude, airspeed, heading,
lattitude, longitude, ground speed, wind, roll und pitch) wurden bis zum ersten Baumkontakt
korrekt aufgezeichnet und konnten analysiert werden. Der Flugwegverlauf lässt
auf ein korrektes Funktionieren der primary flight controls schliessen.
2.1.3 Navigationsausrüstung
2.1.3.1 Inertial Reference System
2.1.3.1.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
inertial reference system (IRS) nichts Auffälliges ergeben.
2.1.3.1.2 Verfügbarkeit während des Unfallfluges
Bis wenige Sekunden vor dem ersten Baumkontakt wurde das Flugzeug mit dem Autopiloten
geflogen. Das Steuerverhalten wies darauf hin, dass die vom IRS gelieferten
Daten vom Autopiloten korrekt verarbeitet wurden.
Aus den CVR-Aufzeichnungen ergaben sich keine Hinweise auf irgendwelche Probleme
mit den vom IRS generierten und auf dem EFIS dargestellten Flugparametern.
2.1.3.2 VHF-Navigationssystem
2.1.3.2.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
VOR-Systems nichts Auffälliges ergeben.
2.1.3.2.2 Verfügbarkeit während des Unfallfluges
Während den letzten 30 Minuten des Unfallfluges wurde das VOR-System zweimal zur
Führung des Flugzeuges mit dem Autopiloten eingesetzt (FDR: VORNAV1 mode). Das
erste Mal auf einem inbound course von 125° zum VOR/DME ZUE, das zweite Mal auf
einem inbound course von 275° zum VOR/DME KLO. Sowohl die FDR-Aufzeichnung wie
auch der radarplot wiesen auf ein typisches Steuerverhalten des Autopiloten im VOR
mode hin, mit relativ starkem Abweichen von der VOR-Standlinie nach dem VOR capture.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 106 von 152
Nach dem Unfall standen die Umschalter VOR/ADF auf beiden distance bearing indicators
(DBI) in Stellung ADF. Die Anzeigen der VOR bearing auf diesen Instrumenten
standen daher nicht zur Verfügung.
Auf dem CVR gab es mehrere Hinweise darauf, dass das VOR auf dem EFIS navigation
display aufgeschaltet war (vermutlich auf beiden Seiten als 2nd course). Weder der
Kommandant noch der Copilot erwähnten irgendwelche Probleme mit dem VORSystem.
2.1.3.3 Entfernungsmessgerät – Distance Measuring Equipment
2.1.3.3.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
distance measuring equipment (DME) nichts Auffälliges ergeben.
2.1.3.3.2 Verfügbarkeit während des Unfallfluges
Während des Anfluges gab es zwei Hinweise von Seiten der Piloten, welche auf ein
korrektes Funktionieren der beiden DME-Systeme schliessen lassen:
Um 21:04:23 UTC meldete der Copilot: “Jetz simer acht Meile” (D8KLO). Zu diesem
Zeitpunkt waren beide VOR/DME-Systeme auf der Frequenz von KLO VOR/DME
(114.85).
Ein Vergleich mit dem radarplot ergab bei dieser Zeit eine Übereinstimmung der beiden
Distanzen. Geht man davon aus, dass der Copilot den course selector (CRS) auf seinem
EFIS control panel in der Stellung LNAV hatte (Ergebnis der Trümmeruntersuchung),
so musste er die DME-Distanz auf seinem distance bearing indicator (DBI) abgelesen
haben. Da die beiden Distanzanzeigen für DME 1 und DME 2 direkt nebeneinander liegen,
wäre ihm eine Differenz sicherlich aufgefallen.
Um 21:05:27 UTC erwähnte der Kommandant: “Sechs Meile drüü drüü isch checked”
(D6KLO /3360 ft). Ein Vergleich mit dem radarplot ergab, dass CRX3597 den Punkt
D6KLO aktuell um 21:05:21 UTC auf einer Höhe von 3240 ft QNH passierte. Der Grund
für die leicht verzögerte Aussage seitens des Kommandanten liegt wahrscheinlich darin,
dass der Copilot um 21:05:21 UTC begann, eine Meldung an die ATC abzusetzen,
welche anschliessend quittiert wurde.
Es gab vom CVR keine Hinweise darauf, dass das DME-System im weiteren Verlaufe
des Fluges beanstandet worden wäre.
2.1.3.4 Air Data System
2.1.3.4.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
air data system nichts Auffälliges ergeben.
2.1.3.4.2 Verfügbarkeit während des Unfallfluges
Die Auslesung des non-volatile memory ergab, dass weder während des Unfallfluges
noch während einem der neun vorangegangenen Flüge im digital air data computer
(DADC) 1 eine Störung (failure) abgespeichert worden war. Der DADC 2 wurde durch
Aufprall und Feuer zerstört und konnte nicht ausgewertet werden.
Die FDR-Aufzeichnungen zeigten während des gesamten Anfluges plausible Höhenund
Geschwindigkeitswerte.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 107 von 152
Der ATC Transponder (mode C) übermittelte bis zur letzten Radarabfrage die korrekte
Höhe.
Die im CVR aufgezeichneten mehrmaligen Hinweise beider Piloten bezüglich angezeigter
Flughöhen wurden mit den im DFDR aufgezeichneten Daten verglichen. Sie stimmten
überein.
Es kann daher davon ausgegangen werden, dass den Piloten während des Anfluges
korrekte air data parameter zur Verfügung standen.
2.1.3.5 Radarhöhenmesser
2.1.3.5.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
radio altimeter system nichts Auffälliges ergeben.
2.1.3.5.2 Verfügbarkeit während des Unfallfluges
Aus der CVR-Aufzeichnung ergab sich kein Hinweis auf eine Störung der radio altimeter
Anzeige während des Unfallfluges.
Die Radarhöhe beider radio altimeter transceiver wurde vom FDR aufgezeichnet. Die
aufgezeichneten Werte erschienen, unter Berücksichtigung der Topographie, als plausibel.
Die beiden akustischen Warnungen ’five hundred’ und ‘minimums’ haben normal angesprochen,
was beweist, dass das radio altimeter system 1 bis zum Unfall funktioniert
hatte. Die Warnung ‘minimums’ sprach 300 ft über Grund an. Diese Entscheidungshöhe
(decision height) wurde zuvor durch die Besatzung standardmässig eingestellt. Ein
Vergleich mit der barometrischen Höhe, unter Berücksichtung des Geländes, zeigte eine
Übereinstimmung.
2.1.3.6 ATC Transponder System
2.1.3.6.1 Zuverlässigkeit
Eine Überprüfung der Unterhaltsdokumente hat bezüglich des Betriebsverhaltens des
air traffic control (ATC) transponder system nichts Auffälliges ergeben.
2.1.3.6.2 Verfügbarkeit während des Unfallfluges
Der radarplot zeigt während des gesamten Anfluges plausible Daten. Die vom FDR
aufgezeichnete Höhe (pressure altitude) stimmt mit derjenigen auf dem radarplot
überein.
Das Radar auf dem Holberg registrierte die letzte Antwort (radar return) von Flug
CRX 3597 um 21:06:32 UTC. Der um 21:06:36 UTC fällige radar return blieb aus.
2.1.4 Unterhalt
Die Auswertung der Unterhaltsaufzeichnungen ausgehend vom C2 check im Mai 2000
lieferte folgende Ergebnisse:
• Es liegen keine Hinweise vor, dass die von Flugzeughersteller und Behörden vorgegebenen
periodischen Kontrollen nicht innerhalb der festgelegten Intervalle ausgeführt
wurden.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 108 von 152
• Die laufzeitgesteuerten Komponenten lagen zum Zeitpunkt des Unfalls innerhalb der
vorgeschriebenen Betriebszeiten.
• Die HB-IXM wies im Vergleich zur gesamten Flotte Avro 146 RJ 85/100 eine durchschnittliche
Fehlerhäufigkeit auf.
• Die hohe Störungsanfälligkeit der auxiliary power unit (APU) war seit der Einführung
des Flugzeugmusters auf der ganzen Flotte Avro 146 RJ 85/100 bekannt.
• Die vorgeschriebene Kalibrierung des standby Höhenmessers und der zwei air data
computer wurde nicht nach den Vorgaben des BAZL durchgeführt.
• Verschiedene Parameter der flight control position auf dem DFDR waren nicht auswertbar.
Dieses Problem wurde bereits anlässlich einer Kontrolle der Parameter am
27. März 2001 festgestellt und nicht behoben.
2.1.5 Lufttüchtigkeit
Es gibt keinen Hinweis, dass sich das Flugzeug HB-IXM im Zeitpunkt des Unfalls nicht
in lufttüchtigem Zustand befand.
2.1.6 Überlebensmöglichkeiten
Durch die Topografie, die Richtung des Flugweges und den Baumbewuchs wurde die
Heftigkeit des Aufpralls gedämpft.
Bei den Baumberührungen wurde der Radom separiert, die rechte Rumpfseite aufgerissen
und vermutlich die Verkabelung zwischen den Bord-Batterien und dem elektrischen
Verteilsystem beschädigt. Das könnte ein Grund für den Funkenwurf sein, der
von dem auf Sitz 14 B reisenden Passagier beobachtet wurde.
Mit dem Aufschlag entwickelte sich das kurz nach dem ersten Baumkontakt ausgebrochene
Feuer innerhalb von Sekunden zu einem Brand mit hohen Temperaturen. Aufgrund
dieses starken Feuers war der Unfall nur zufällig überlebbar.
Es gibt keinen Hinweis darauf, dass die überlebenden Mitglieder der Kabinenbesatzung
die Überlebensmöglichkeiten hätten verbessern können.
Der Einsatz der Polizei- und Rettungskräfte war schnell und effizient.
2.2 Menschliche, betriebliche und organisatorische Aspekte
2.2.1 Das „SHEL“-Modell
Die Entstehung von Flugunfällen ist oft durch das komplexe Zusammenwirken menschlicher,
technischer, betrieblicher und umweltbedingter Faktoren zu erklären. Bei der
Beurteilung wurde deshalb ein systemischer Ansatz gewählt, der nicht nur die offensichtlichen
Fehler benennt, sondern auch die zu Grunde liegende Situation analysiert
und die tiefer liegenden Ursachen für primäre Fehler feststellt.
Zur Verdeutlichung der Zusammenhänge und Klärung der Handlungs- und Entscheidungsweise
der Flugbesatzung wurde das von der internationalen Zivilluftfahrtorganisation
ICAO im „Human Factor Digest No. 7“ empfohlene „SHEL“-Modell eingesetzt.
Dieses Werkzeug ist ein Modell zur Betrachtung des Zusammenwirkens von Menschen
mit anderen Menschen und technischen Einrichtungen in einem bestimmten Arbeitsumfeld.
Die vier Buchstaben „S-H-E-L“ bedeuten dabei eine Abkürzung für die vier
Komponenten des Modells:
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 109 von 152
S – software Nichtmaterieller Teil des Systems, welcher
hauptsächlich Verfahren, Checklisten,
Vorschriften und Regeln umfasst.
H – hardware Technische Systeme wie Flugzeug,
Ausrüstung etc.
E – environment Die Umgebung schliesst alle äusseren
Faktoren wie Wetter, andere Flugzeuge,
Flugsicherung, Flugbetriebsunternehmen
und Aufsichtsbehörde
mit ein.
L – liveware Der Mensch mit seinen Variationen und
Grenzen ist im Zentrum des Modells
angeordnet. Es können mehrere L-Elemente
zusammenwirken (Kommandant,
Copilot etc.)
Für die Untersuchung des vorliegenden Flugunfalls wurden der Kommandant und der
Copilot als zentrale Ausgangspunkte für den Bereich liveware – L genommen. Die Art
des Zusammenwirkens der beiden Flugbesatzungsmitglieder stellte einen weiteren
wichtigen Untersuchungsgegenstand dar. Weiter wurden die Beziehungen zwischen der
Flugbesatzung und dem Flugzeug (L-H), bzw. die Schnittstelle zwischen Flugbesatzung
und Verfahren (L-S) betrachtet. Als letzter Punkt wurde der Einfluss der Umgebung auf
das Verhalten der Flugbesatzung untersucht (L-E). Zu dieser Umgebung zählte neben
dem Wetter und der Flugsicherung auch das Flugbetriebsunternehmen und die Aufsichtsbehörde.
Als Grundlage für die zeitlichen Abläufe wurde die als Beilage angefügte
Zusammenfassung des Flugverlaufs (vgl. Anhang 1) verwendet.
2.2.2 Kommandant (L)
2.2.2.1 Vorgeschichte
Erste Hinweise auf die Grenzen der Fähigkeiten des Kommandanten und auf seine
Schwierigkeiten, diese zu akzeptieren, finden sich in der Tatsache der nicht abgeschlossenen
Volksschulbildung sowie der Ablehnung seiner Kandidatur für die Fliegerische
Vorschulung auch nach dreimaligem Wiedererwägungsantrag. Diese wiederholten
Versuche einer Wiedererwägung zeigen erstmals die grosse Hartnäckigkeit des Kommandanten
im Erreichen seiner fliegerischen Ziele.
Schon als der Kommandant im Jahr 1979 im Flugbetriebsunternehmen Crossair seine
Arbeit aufnahm, galt er mit über 4000 Flugstunden als erfahren. Vorher hatte er bereits
mehrere Jahre auf kleineren Flugzeugen Bedarfsflüge durchgeführt und die Berechtigung
erhalten, Flugschüler im Sicht- und Instrumentenflug auszubilden. Wie sich
aus den Unterlagen entnehmen lässt, lag die Begabung des Kommandanten eindeutig
im Sichtflugbereich. Er bestand die Umschulungen auf die entsprechenden Flugzeugmuster
problemlos. Hingegen bestand er zweimal die Prüfung zur Erlangung der Instrumentenflugberechtigung
nicht, bevor er diese nach dem dritten Versuch erhielt. Die
Schwierigkeiten im Instrumentenflug, die von verschiedenen Experten des Eidgenössischen
Luftamtes anlässlich von periodischen Checkflügen festgestellt wurden, waren
auch noch vorhanden, als er bereits selber Flugschüler im Instrumentenflug ausbildete,
regelmässig flog und somit einen guten Trainingsstand aufwies. Die erste Umschulung
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 110 von 152
auf ein Verkehrsflugzeug absolvierte er beim Flugbetriebsunternehmen Crossair kurz
nach seinem Eintritt. Der Kurs wurde bei einem international tätigen Ausbildungszentrum
durchgeführt. Die Prüfung zur Erlangung der Musterberechtigung legte der Kommandant
vor einem Experten des Eidgenössischen Luftamtes ab und bestand diese
trotz seiner Flugerfahrung mit der Note „below average – average“. Noch immer wurden
grundsätzliche Schwächen im Instrumentenflug und eine mangelnde Übersicht
festgestellt.
Kurze Zeit später übertrug das Eidgenössische Luftamt die Abnahme von Leistungsüberprüfungen
wie line, simulator und route checks sowie von Fähigkeitsnachweisen
nach Umschulungen an Experten, die im Flugbetriebsunternehmen angestellt waren.
Dies entspricht bis heute der gängigen Praxis. Die Leistungen des Kommandanten
wurden nun zunehmend besser bewertet und 1982 bezeichnete Crossair seine fliegerischen
Leistungen als überdurchschnittlich. Abgesehen von Einzelfällen waren auf den
Checkblättern bis zu Beginn des Jahres 1996 nur wenig aussagekräftige Feststellungen
vorhanden und die Leistungen des Kommandanten wurden weitgehend als gut bewertet
(vgl. Anhang 9).
In den beiden Umschulungskursen auf das Flugzeugmuster MD 80 zeigten sich Schwierigkeiten,
die schon zu Beginn der Laufbahn festgestellt worden waren. Der Kommandant
erhielt mehrere Zusatzlektionen im Simulator, ohne dass sich ein genügender
Fortschritt einstellte. Die Beurteilung, welche eine mangelnde Gesamtübersicht und
grundsätzliche Probleme beim Führen des Flugzeuges feststellte, war zutreffend und
entsprach den früher schon festgestellten Leistungen des Kommandanten. Die Untersuchung
ergab, dass die Umschulungskurse auf MD 80 ein hohes Anspruchsniveau aufwiesen
und gegenüber den Teilnehmern fair durchgeführt wurden.
Während der Zeit, als der Kommandant das Flugzeugmuster Saab 340 geflogen hatte,
waren neben der weitgehend positiven Bewertung auch einige Leistungsprobleme
sichtbar geworden. Die Entscheidungsträger des Flugbetriebsunternehmens hatten diese
aber entweder nicht wahrgenommen oder nicht zweckmässig auf die Probleme reagiert.
Unter diesem Gesichtspunkt muss auch die Entscheidung gewertet werden, den
Kommandanten erneut auf dem Saab 340 einzusetzen, ohne die Gründe für das Versagen
während des Umschulungskurses auf das Flugzeugmuster MD 80 weiter zu analysieren.
In der Folge wurden die Leistungen auf der Saab 340 wieder allgemein als gut
beurteilt. Mit der Ausserbetriebnahme der Saab 340 bemühte sich Crossair, für den
Einsatz des Kommandanten ein neues Flugzeugmuster zu finden, da er weiter zu fliegen
wünschte. Ohne weitere Abklärungen wurde die Avro RJ 85/100 als das am besten
für ihn geeignete Flugzeug ausgewählt. Somit wurde der Kommandant für einen Umschulungskurs
auf das Unfallmuster eingeteilt. Da es sich bei den Instruktoren und Experten
dieses Lehrgangs um Personen gehandelt hat, welche die gleichen Massstäbe
und Grundsätze hatten wie in der Flotte Saab 340, fielen die Qualifikationen ähnlich
positiv aus. Der Umstand, dass der Kommandant gemäss den vorliegenden Unterlagen
annähernd fehlerfrei gearbeitet haben soll, steht im Widerspruch zu früheren Bewertungen
von Experten, die nicht aus dem Flugbetriebsunternehmen stammten.
Wie ein roter Faden zieht sich ferner eine gewisse Abneigung gegenüber komplexeren
technischen Systemen durch die Laufbahn des Kommandanten. Der unzweckmässige
Einsatz von Navigationshilfen wurde vor allem zu Beginn der fliegerischen Laufbahn
vermerkt und fand eine Entsprechung bei den Problemen im Umgang mit dem digital
flight guidance system des Flugzeugmusters MD 80. Das vorgefundene instrument setting
des Kommandanten lässt den Schluss zu, dass die Navigationsinstrumente auch
während des Unfallfluges nicht optimal eingesetzt wurden. Dieser Umstand wird allerdings
als nicht unfallrelevant beurteilt.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 111 von 152
2.2.2.2 Verhalten während des Unfallfluges
Übereinstimmend wurde das Verhalten des Kommandanten von sämtlichen Zeugen als
sehr ruhig und selbstbeherrscht beschrieben. Copiloten nahmen ihn vor allem aufgrund
seiner grossen Flugerfahrung und wegen dieser fast unerschütterlichen Ruhe als Autorität
wahr. Auch die Aufzeichnungen des cockpit voice recorder zeigen annähernd während
des gesamten Unfallfluges dieses Bild. Nur in zwei Situationen schien der Kommandant
etwas irritiert: Um 20:48:39 UTC äusserte er spontan einen Kraftausdruck, als
er erfuhr, dass – entgegen seiner Annahme – ein Anflug auf Piste 28 durchgeführt
werden müsse: „Ou, Sch*****, das äno, ja guet ok“. Dies könnte ein Hinweis dafür
sein, dass ihm dieser kurzfristige Wechsel des Anfluges nicht behagte. Auch beim zweiten
Mal, um 21:06:25 UTC, ungefähr 10 Sekunden bevor die Maschine die ersten Hindernisse
berührte, dürfte ein sich anbahnendes Unbehagen der Grund für die spontane
Äusserung gewesen sein: „Sch*****, zwei Meile hät er gseit, gseht er d’Pischte“.
Bis ungefähr 90 Sekunden bevor das Flugzeug mit dem bewaldeten Höhenzug kollidierte
verlief der Flug mehr oder weniger normal. Gewisse Entscheide und Handlungen, die
vorher stattfanden, beeinflussten zwar das Unfallgeschehen, hätten aber an sich noch
nicht zwangsläufig zu einem fatalen Ausgang führen müssen. Auf diese vorbereitenden
Handlungen und Entscheide soll weiter unten eingegangen werden.
Der erste Hinweis, dass der Anflug nicht auf dem vorgesehenen Gleitweg verlief, bot
sich dem Kommandanten um 21:05:21 UTC, als sich das Flugzeug in einer Schrägdistanz
von 6 NM vom VOR/DME Kloten befand. Gemäss Anflugprofil war für diese Position
eine Minimalhöhe von 3360 ft QNH vorgesehen. Tatsächlich betrug die Höhe der
HB-IXM zu diesem Zeitpunkt lediglich 3240 ft QNH. Wie die Aufzeichnungen des CVR
belegen, überprüfte der Kommandant zwar bei einem Abstand von 6 NM vom
VOR/DME Kloten die Höhe, erkannte die Abweichung von 120 ft nicht oder beurteilte
sie als tolerierbar. Um 20:05:27 UTC stellte er fest: „Sächs Meile drü drü isch checked“.
Zu diesem Zeitpunkt muss sich der Kommandant über die Distanz zum Flugplatz noch
bewusst gewesen sein. Die Sinkrate wurde aber weder verändert noch angesprochen.
Anschliessend wies der Kommandant mehrfach auf die Mindesthöhe für den Anflug hin,
noch bevor diese erreicht war. Ungefähr 15 Sekunden bevor die Maschine bei der minimum
descent altitude (MDA) von 2390 ft QNH angelangt war, erwähnte der Kommandant,
dass er Sicht auf den Boden habe: „Ground contact hämmer, hä“. Dies zeigt,
dass er in dieser Phase zeitweilig nach draussen schaute. Die folgende Bemerkung
weist darauf hin, dass er die Wettermeldung zumindest teilweise verstanden hatte, die
Crossair Flugnummer CRX 3891 um 21:04:34 UTC übermittelt hatte: „Mä hät gseit,
Pischte hät er spaat gseeh da…“ Zu diesem Zeitpunkt befand sich die HB-IXM bei ungefähr
4.8 NM Schrägdistanz vom VOR/DME Kloten. Der Kommandant stellte – im Gegensatz
zu 21:05:27 UTC – keine Kontrolle der Distanz mehr an. Dies dürfte der Beginn
eines zumindest teilweisen Verlustes des Situationsbewusstseins darstellen.
Kurze Zeit später, um 21:06:10 UTC erreichte die Maschine die MDA von 2390 ft QNH.
Der Kommandant stellte gleichzeitig fest: „…zwo vier, s’Minimum…ground contact han
ich…mer gönd wiiter im Moment…es chunnt füre…ground contact hämmer…mer gönd
wiiter“. Der Kommandant war sich somit bewusst, dass er die Mindesthöhe für den Anflug
erreicht hatte. Ein Bezug auf die Distanz zum VOR/DME Kloten wurde nicht gemacht.
Obwohl die definierten Sichtbedingungen für ein Verlassen der MDA nicht gegeben
waren, entschied sich der Kommandant weiter abzusinken. Für diesen Entscheid
dürften unter anderem die folgenden Gründe ausschlaggebend gewesen sein:
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 112 von 152
• Es war zeitweise Sicht auf den Boden vorhanden.
• Der Kommandant hegte gemäss seiner Aussage die Erwartung, dass die Piste bald
sichtbar würde.
• Der Kommandant war es von seinem langjährigen Einsatz auf dem Saab 340 gewohnt,
- nachweisbar in Lugano - unter die Mindesthöhe für den Anflug abzusinken,
auch wenn nur Sichtkontakt zum Boden und nicht zur Piste bestand. Wie die Beschreibung
des Vorfalls vom Dezember 1995 zeigt, traute sich der Kommandant offenbar
zu, ein solches Verfahren auch bei Nacht und unter Instrumentenbedingungen
durchzuführen.
Aufgrund der meteorologischen Bedingungen war ein Sichtkontakt zur Piste höchst
unwahrscheinlich, da sich die Maschine beim Durchfliegen der MDA noch bei ungefähr
4.4 NM (8.1 km) Schrägdistanz zum VOR/DME Kloten bzw. 3.5 NM (6.5 km) zur Pistenschwelle
befand.
Um 21:06:22 UTC war eine Radarhöhe von 500 ft RA erreicht und das ground proximity
warning system lieferte die Meldung: „Five hundred“. Dieser call out löste möglicherweise
ein Unbehagen aus, denn der Kommandant sagte unmittelbar darauf:
„Sch*****, Zwei Meile hät er gseit, gseht er d’Pischte“. Ein weiteres Mal erinnerte sich
der Kommandant an die Meldung der unmittelbar vorher gelandeten Maschine. Der
Kommandant hatte sinngemäss richtig eine Distanz von 2 NM zum VOR/DME Kloten
verstanden, bei der CRX 3891 die Piste gesehen hatte. Da sich die HB-IXM zu diesem
Zeitpunkt noch im Abstand von 3.1 NM zur Pistenschwelle befand, war ein Sichtkontakt
zur Piste immer noch nicht möglich. Aber auch in den folgenden Sekunden sprach der
Kommandant nur über die Höhe, die das Flugzeug gerade durchflog. Um 21:06:31 UTC
las der Kommandant den Höhenmesser ab: „Zwöi Tuusig“. Da er während des gesamten
Fluges seine Wahrnehmungen immer auch ausgesprochen hatte, kann davon ausgegangen
werden, dass er in dieser Phase nur noch die Angaben des Höhenmessers
beachtete. Die DME-Distanz kontrollierte er offenbar nicht mehr. Damit war das Bewusstsein
über einen wesentlichen Parameter zur Anflugüberwachung verloren gegangen.
Mit grosser Wahrscheinlichkeit versuchte der Kommandant in dieser Phase weiterhin
Sicht auf den Boden zu gewinnen. Da er keine Sichtreferenzen mehr erwähnte,
ist davon auszugehen, dass er keine mehr hatte.
Eine Sekunde später, um 21:06:32 UTC gab das GPWS die Meldung „minimums“ aus,
da 300 ft RA erreicht waren. Nochmals eine Sekunde später fragte der Kommandant
zögernd: „...go around mache?“ Wäre zu diesem Zeitpunkt anstelle der Frage ein go
around eingeleitet worden, so hätte, wie die Versuche im Simulator gezeigt haben, die
Kollision mit den Bäumen eventuell noch knapp vermieden werden können.
Um 21:06:34 UTC entschied der Kommandant schliesslich, den Durchstart einzuleiten,
möglicherweise weil die Hindernisse im Licht der Landescheinwerfer sichtbar wurden.
2.2.2.3 Medizinische Aspekte
Die Untersuchung ergab keine Anhaltspunkte für eine ganz oder teilweise für den Unfall
verantwortliche medizinische Ursache. Insbesondere fehlen Hinweise auf eine plötzliche
Flugunfähigkeit des Kommandanten aus medizinischen Gründen (obvious sudden
incapacitation).
Der Kommandant hatte an den zwei Tagen vor dem Unfall die erlaubten maximalen
Einsatzzeiten deutlich überschritten und die vorgeschriebene Ruhezeit in der Nacht vor
dem Unfall leicht unterschritten. Es ist somit davon auszugehen, dass er am Unfalltag
tendenziell übermüdet war. Der Unfall passierte am Ende eines Tages an dem der
Kommandant rund 15 Stunden wach gewesen ist. Durch seine nebenberufliche TätigSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 113 von 152
keit als IFR-Fluglehrer vor dem Linienflugdienst stand er zum Unfallzeitpunkt mehr als
dreizehneinhalb Stunden im Einsatz. Ein längerer Arbeitsunterbruch, der beispielsweise
eine Erholung durch Schlaf ermöglicht hätte, fehlte. Das schlechte Wetter dürfte die
Anstrengung während des ganzen Tages noch verstärkt und die Ermüdung begünstigt
haben.
Eine derartige Ermüdung beeinträchtigt die Konzentrations- und Entscheidungsfähigkeit
sowie die Fähigkeit zur Analyse komplexer Vorgänge und die Fehlerhäufigkeit nimmt
zu. Dies entspricht den Beobachtungen während des Unfallfluges:
• Um 20:43:44 UTC, während der Kommandant das approach briefing für den Anflug
auf Piste 14 durchführte, machte der Copilot ihn auf eine zu hohe Geschwindigkeit
aufmerksam: „Mer chömed glaub mit de speed ächli in rote Bereich ine.“ Der Kommandant
hatte offenbar während der Anflugbesprechung diesem Parameter zu wenig
Beachtung geschenkt.
• Während des zweiten approach briefings für den Anflug auf Piste 28 beschrieb der
Kommandant seinen Plan kurz nach 20:52 UTC unter anderem wie folgt: „Wämer dä
turn macht bi Ko…Komma Sächs Meile, Sächs Komma Föif Meile left turn und dänn
dä Aaflug da gemäss Profil…“ Dabei beschrieb er einen left turn. Tatsächlich führt
die Annäherung auf die Anfluggrundlinie aber über eine Rechtskurve. Der Kommandant
beschrieb – ohne sich den Flugweg bildlich vorzustellen – was er auf der Anflugkarte
sah: Die Anfluggrundlinie mit Kurs 275° führt auf einer Anflugkarte, deren
Nordrichtung nach oben zeigt, nach links.
• Möglicherweise bewertete der Kommandant auch die Abweichung vom Sollgleitweg
bei 6 NM Schrägdistanz vom VOR/DME Kloten nicht als genügend gross um eine
Korrektur einleiten zu müssen, weil er übermüdet war.
• Auch der Umstand, dass der Kommandant die Sinkgeschwindigkeit mit abnehmender
Horizontalgeschwindigkeit nicht entsprechend verringerte und somit der Gleitweg
zunehmend steiler wurde, könnte auf die Übermüdung zurückzuführen sein.
Aus dem oben genannten ist zu schliessen, dass die Ermüdung die Kriterien für eine
Beeinträchtigung der Flugtauglichkeit (subtle incapacitation) erfüllt.
2.2.3 Copilot (L)
2.2.3.1 Allgemeines
Der Copilot wies eine geradlinige Ausbildung zum Berufspiloten mit Instrumentenberechtigung
auf und besass ein frozen ATPL, da er bereits einen Theoriekurs für Verkehrspiloten
besucht und die entsprechenden Prüfungen bestanden hatte. Seine Gesamtflugerfahrung
war mit knapp 500 Stunden gering. Auf dem Unfallmuster wies er
jedoch eine leicht höhere Flugerfahrung als der Kommandant auf, da er rund zwei Monate
früher seinen Einsatz auf der Avro RJ 85/100 begonnen hatte.
Der Copilot wurde von Zeugen übereinstimmend als empfindsam und freundlich beschrieben.
Während des Auswahlverfahrens für Copiloten der Crossair, stellte man fest,
dass der Copilot die Tendenz hatte, sich unterzuordnen. Er wurde als vital, aber nicht
kämpferisch sondern nach Harmonie strebend beschrieben.
Diese Eigenschaften sind an sich noch kein Hindernis für eine erfolgreiche Pilotenlaufbahn,
wenn im Flugbetrieb und bei der Ausbildung der Persönlichkeitsentwicklung
Rechnung getragen wird.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 114 von 152
2.2.3.2 Medizinische Aspekte
Die Untersuchung ergab keine Anhaltspunkte für eine ganz oder teilweise für den Unfall
verantwortliche medizinische Ursache. Insbesondere fehlen Hinweise auf eine plötzliche
gänzliche oder teilweise Flugunfähigkeit des Copiloten aus medizinischen Gründen
(obvious bzw. subtle sudden incapacitation).
2.2.4 Zusammenwirken zwischen Kommandant und Copilot (L-L)
2.2.4.1 Allgemeines
Der Kommandant vereinte auf sich eine rund vierzigmal grössere Gesamtflugerfahrung
als der Copilot und war wesentlich älter als er. In diesem Fall führte dies zu einem
deutlichen Autoritätsgefälle zwischen den Flugbesatzungsmitgliedern. Der Umstand,
dass der Copilot während seiner Instrumentenflugausbildung bei der Flugschule Horizon
Swiss Flight Academy den Kommandanten bereits als Fluglehrer erlebt hat, dürfte
in diesem Zusammenhang wohl nur eine untergeordnete Rolle spielen, da lediglich
zwei gemeinsame Schulungsflüge durchgeführt worden sind. Hingegen wurde das Autoritätsgefälle
noch dadurch verstärkt, dass der Kommandant den Copiloten von
20:37:25 UTC an während rund zwei Minuten ausführlich über die Interpretation eines
Pistenzustandsberichtes belehrte und ihn so in eine Schülerrolle versetzte. Da der Copilot
unmittelbar vorher den runway report von Zürich-Kloten annähernd vollständig und
korrekt entschlüsselt hatte, war die Erklärung eigentlich nicht nötig. Der Copilot machte
denn auch während der Ausführungen des Kommandanten einen eher uninteressierten
Eindruck.
2.2.4.2 Fortsetzung des Fluges unter die Mindesthöhe für den Anflug
Der Kommandant entschied sich, beim Erreichen der minimum descent altitude weiter
zu sinken, obwohl kein Sichtkontakt zur Anflugbefeuerung bzw. zur Piste vorhanden
war. Aus Sicht der Fehleranalyse war dies ein Fehler, bei dem Verfahrensvorgaben
nicht eingehalten wurden. Die Aufgabe des Copiloten war es unter anderem, die Arbeit
des Kommandanten zu überwachen und Fehler wenn möglich schon im Ansatz zu erkennen
und zu verhindern. Wie das Unfallgeschehen zeigt, ist dies im vorliegenden Fall
aus folgenden Gründen nicht gelungen:
• Beim approach briefing für den standard VOR/DME approach 28 zwischen 20:51:56
UTC und 20:53:05 UTC fand zwar eine Besprechung der Angaben auf der Anflugkarte
statt. Ein eigentliches Konzept für die Anfluggestaltung wurde hingegen nicht
entwickelt, bzw. nicht kommuniziert. Es wurde insbesondere nicht festgelegt, in
welcher Hinsicht beim Konfigurieren des Flugzeuges von den Standardverfahren abgewichen
werden sollte, wie der Geschwindigkeitsabbau zu erfolgen habe und in
welchem Abstand zur Piste der Instrumentenanflug beendet werden sollte. Das Fehlen
eines solchen Handlungsplans hat es dem Copiloten erschwert, das tatsächliche
Geschehen zeitgerecht beurteilen zu können.
• Der Entscheid, das Flugzeug erst nach dem final approach fix für die Landung zu
konfigurieren und diese Konfiguration während des gesamten Endanfluges laufend
zu ändern, machte es für beide Besatzungsmitglieder schwieriger, den Gleitweg des
Flugzeuges zu überwachen bzw. dessen Entwicklung zeitlich vorherzusehen. Diese
Überwachung erfolgte nicht oder nur ungenügend, was dadurch belegt wird, dass
der Kommandant um 21:04:36 UTC eine Sinkrate von rund 1000 ft/min wählte, die
zur aktuellen Geschwindigkeit des Flugzeuges von 160 kt passte. Diese Sinkrate
wurde anschliessend nicht mehr der abnehmenden Horizontalgeschwindigkeit angepasst.
Die Folge daraus war, dass der Gleitweg der HB-IXM im Vergleich zum nomiSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 115 von 152
nalen Gleitpfad zunehmend steiler wurde und die Maschine unter diesen geriet (vgl.
Anhang 10).
• Auch für den Copiloten bot sich der erste Hinweis, dass der Anflug nicht auf dem
vorgesehenen Gleitweg verlief, um 21:05:21 UTC, als sich das Flugzeug in einer
Schrägdistanz von 6 NM vom VOR/DME Kloten befand. Der Kommandant erwähnte
diesen Punkt, reagierte aber auf die vorhandene Höhenabweichung nicht. Der Copilot
war zu diesem Zeitpunkt noch mit den letzten Punkten des check for approach
beschäftigt und somit in einer ungünstigen Ausgangslage für eine Überwachung des
Kommandanten. Auch in den folgenden Sekunden war der Copilot wieder mit Manipulationen
beschäftigt und nahm Kontakt mit der Platzverkehrsleitstelle Zürich tower
auf.
• Kurze Zeit später, um 21:05:36 UTC begann wieder eine Abfolge von Tätigkeiten,
die beide Besatzungsmitglieder beschäftigte und eine Kontrolle des Anflugwinkels
erschwerte. Kommandant: „Flaps 33“ – Copilot: „Speed checked, flaps 33 selected“,
Kommandant: “Final check” – Copilot: “Final check, confirm three greens” – Kommandant:
“Is checked”. Kommandant, in Bezug auf die Anfluggeschwindigkeit
(Vref+5 kt): „Hundert sächzäh (116)“ – Copilot: „Full flaps…set” – Kommandant:
“Checked” – Copilot: “Cabin report received” – Kommandant: “Received” – Copilot:
“Landing clearance to go” – Kommandant: “Isch to go” – Copilot: “Jawohl”.
• Als die beschriebenen Tätigkeiten abgeschlossen waren, befand sich die HB-IXM bei
ungefähr 3.9 NM zur Pistenschwelle und noch etwa 200 ft über der MDA. Die
verbleibenden 15 Sekunden bis zum Erreichen der Mindesthöhe für den Anflug waren
für den Copiloten wahrscheinlich zu kurz, um sich wieder ein vollständiges Bild
von der aktuellen Situation machen zu können.
• Die Aufzeichnungen des cockpit voice recorder belegen, dass die Kommunikation
und die Zusammenarbeit zwischen dem Kommandanten und dem Copiloten ruhig
und sachlich geschahen. Die ausgesprochene Ruhe, die der Kommandant fast
durchgehend an den Tag legte, hat beim Copiloten mit grosser Wahrscheinlichkeit
den Eindruck eines erfahrenen Vorgesetzten erweckt, der überlegt und bewusst
handelte. Dies dürfte einer der Hauptgründe sein, warum der Copilot nicht intervenierte,
als der Kommandant um 21:06:10 UTC den Sinkflug unter die Mindesthöhe
für den Anflug fortsetzte. Die Tatsache, dass er leise „Zwei, Vier“ sagte, als das
Flugzeug die Mindesthöhe durchflog, zeigt, dass auch er sich über die aktuelle Höhe
der Maschine bewusst war. Ob er diese Höhe auch in einen Bezug zur Entfernung
von der Piste brachte, muss offen bleiben.
• Während den nächsten 24 Sekunden, die nach dem Durchfliegen der MDA bis zum
Einleiten des Durchstartversuchs verstrichen, sind keine Äusserungen oder Handlungen
des Copiloten dokumentiert. Aufgrund seiner Ausbildung und seiner Fähigkeiten
darf angenommen werden, dass er in der Lage war, das Absinken unter die
MDA ohne genügende Sichtreferenzen als Fehler zu erkennen. Er unternahm jedoch
keinen Versuch, die Weiterführung des Fluges unter die minimum descent altitude
zu verhindern.
2.2.4.3 Crew Resource Management
Der Kommandant wurde in seiner Laufbahn erst in den letzten Jahren mit Ausbildung
in crew resource management (CRM) konfrontiert. Eine solche Aus- und Weiterbildung
hat unter anderem zum Ziel, Verhaltensmuster und Einstellungen von Besatzungsmitgliedern
so zu verbessern, dass die Zusammenarbeit optimiert wird. Erfahrungsgemäss
dauert dieser Prozess mehrere Jahre. Das Unfallgeschehen zeigt, dass eine effiziente
Zusammenarbeit, welche eine optimale Ausnützung der Besatzung insbesondeSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 116 von 152
re für die gegenseitige Überwachung beinhaltet, nur ungenügend vorhanden war. Auch
der Copilot hatte eine entsprechende Ausbildung genossen. Das Unfallgeschehen belegt,
dass ein Transfer der Kursinhalte in den Alltag nicht in ausreichendem Masse
stattgefunden hat.
Zusammenfassend muss festgehalten werden, dass sich die unzweckmässigen Entscheide
und Handlungen erst durch die Kombination der Besatzungsmitglieder zu einem
fatalen Ereignis entwickeln konnten (vgl. Sicherheitsempfehlung 2002-1).
2.2.5 Zusammenwirken zwischen Flugbesatzung und Flugzeug (L-H)
2.2.5.1 Allgemeines
Bei der Betrachtung des Zusammenwirkens zwischen Besatzung und Flugzeug (L-H)
stand die Betrachtung Mensch – Maschine im Vordergrund. Dabei wurde nicht nur das
Flugzeug an sich, sondern auch dessen Ausrüstung, insbesondere die während des
Fluges verwendete Dokumentation des Anflugverfahrens berücksichtigt.
Zunächst muss als wichtige Voraussetzung festgehalten werden, dass das Flugzeug
HB-IXM bis zur Kollision mit den ersten Hindernissen lufttüchtig war. Insbesondere
funktionierten alle Flugführungs- und Navigationsgeräte einwandfrei. Die Startschwierigkeiten
der APU während des Anfluges, die zu einem zweiten Anlassvorgang führten,
hatten keinen Einfluss auf das Unfallgeschehen. Das Hilfsaggregat lief um 21:00:04
UTC an, bevor der Sinkflug für den Endanflug begonnen wurde.
Durch die korrekte Einstellung des Referenzdruckes an den Höhenmessern um
20:58:13 UTC und einen entsprechenden Quervergleich schuf die Besatzung die Ausgangslage
um einen wichtigen Parameter für die Durchführung eines non presicion approach,
die Höhe über Meer, korrekt messen zu können.
2.2.5.2 Einsatz der Flugführungs- und Navigationsausrüstung
Um 20:59:25 UTC erwähnte der Kommandant: „LNAV isch dine, das tüemer den
schnäll mit em LNAV flüüge detä... uf hundertachtesiebzig (178)“ – LNAV ist drin, das
fliegen wir rasch mit dem LNAV dort… auf hundert achtundsiebzig. Zu diesem Zeitpunkt
hatte er mit grosser Wahrscheinlichkeit die folgende Route eingegeben: ZUE -
D178F - KLO* - KLO** - RW28. Der Autopilot arbeitete im mode VORNAV1 und es war
ein inbound course von 125° zum VOR ZUE eingegeben worden.
Um 21:00:06 UTC meldete der Kommandant: „LNAV isch engaged, da simmer praktisch
druffe... dän hämer hundert achtesibzig (178) dä Kurs“ – LNAV ist engaged, da
sind wir praktisch drauf… dann haben wir hundertachtundsiebzig als Kurs. In diesem
Moment wurde der Autopilot in den mode LNAV1 geschaltet und mit grosser Wahrscheinlichkeit
gleichzeitig ein DTO nach ZUE eingegeben. Ebenfalls gleichzeitig drehte
der Kommandant seinen VOR course selector auf 178°.
Um 21:00:17 UTC wählte der Kommandant die VOR/DME Frequenz von 114.85 MHz
(KLO) im preselect window seines VOR/ILS/DME control panels. Aktiv gewählt war zu
diesem Zeitpunkt noch immer ZUE. Es ist wahrscheinlich, dass der Kommandant auf
seinem EFIS control panel LNAV als primary course (CRS) und VOR1 als 2nd course gewählt
hatte. Der Copilot hatte auf seinem EFIS control panel wahrscheinlich LNAV als
primary course (CRS) und VOR2 als 2nd course selektiert. Da der LNAV selector in der
Stellung LNAV1 stand, erschien auf beiden navigation displays (ND) „LNAV1“ in gelber
Farbe.
Um 21:01:14 UTC erwähnte der Kommandant folgendes: „Guet, das stimmt überii
s’LNAV und de radial, den gan ich mit dem füre uf Chlote, mit em inbound track 275“ –
Gut, das stimm überein, das LNAV und der radial, dann gehe ich mit diesem vorwärts
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 117 von 152
nach Kloten, mit inbound track 275. Der Copilot hatte auf seiner Seite einige Sekunden
zuvor einen VOR course von 275° gewählt. Um den VOR radial mit dem LNAV track
vergleichen zu können, hatte der Kommandant möglicherweise seinen 2nd course auf
VOR2 umgeschaltet. Er bekundete nun auch seine Absicht im LNAV mode weiter bis
nach Kloten zu fliegen. Kurze Zeit später hatte auch der Kommandant den VOR course
auf seiner Seite auf 275° umgestellt.
Um 21:02:32 UTC erreichte das Flugzeug den Fixpunkt D178F und begann, noch immer
im LNAV mode, nach rechts, in Richtung auf den FAF zu drehen. Mittlerweile hatten
beide Piloten ihre VHF NAV-Geräte auf die Frequenz von VOR/DME KLO eingestellt
und überprüft.
Um 21:03:38 UTC schlug der Copilot vor, das VOR vorzuwählen, wie es den Verfahrensvorgaben
des Flugbetriebsunternehmens entspricht (PIH AVRO RJ85/100 procedure
15.1, standard GNS-X procedures). Der Kommandant war immer noch überzeugt,
dass es besser wäre, den Anflug im LNAV mode fortzuführen. Er ging dann aber auf
den Vorschlag des Copiloten ein und wählte den VOR mode um 21:03:52 vor.
Um 21:04:15 UTC erreichte das Flugzeug die gewählte VOR-Standlinie und behielt diese
bei (VOR capture). Der Autopilot blieb bis zum Unfallzeitpunkt im VOR mode.
Während des step down descent wurde der Autopilot abwechslungsweise im ALT mode
und im VertSpd mode betrieben. Um 21:04:23 UTC hatte CRX3597 den Fixpunkt
D8KLO (KLO*) auf einer Höhe von 4000 ft QNH erreicht und begann darauf hin mit einer
Sinkgeschwindigkeit von vorerst 1000 ft/min abzusinken.
Um 21:06:34 UTC wurde der Autopilot ausgeschaltet und ein manueller go around eingeleitet.
Nach dem Unfall wurden folgende Schalterstellungen gefunden:
Ort Bedieneinheit Stellung
instrument panel links EFIS Umschalter NORM
Schutzkappe intakt
EFIS 1 MSTR (lever lock
switch)
ON
display dimming panel Drehknopf für das Wetterradar
im Gegenuhrzeigersinn am
Anschlag
instrument panel rechts EFIS 2 MSTR (lever lock
switch)
ON
EFIS control panel links bearing selector (BRG) VOR
range selector (RNG) 10
course selector (CRS) OFF
format MAP
EFIS control panel rechts bearing selector (BRG) OFF
range selector (RNG) 10
course selector (CRS) LNAV
format MAP
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 118 von 152
Es ist anzunehmen, dass der Kommandant den CRS selector auf seinem EFIS control
panel während des Endanfluges in die Stellung OFF gebracht hatte um den navigation
display (ND) zu entlasten (declutter). In dieser Situation hatte er als 2nd course mit hoher
Wahrscheinlichkeit VOR 2 gewählt. Da auf dem VOR/ILS/DME control panel der
DME selector auf HOLD stand, wurde auf dem ND des Kommandanten, zusätzlich zum
VOR bearing und dem VOR course auch die VOR deviation angezeigt.
Es ist anzunehmen, dass der Copilot die gefundenen Einstellungen für den gesamten
Anflug gewählt hatte und dass er als 2nd course das VOR 2 gewählt hatte. Auch auf
seinem VOR/ILS/DME control panel stand der DME selector auf HOLD, sodass er auf
dem ND nebst der LNAV-Präsentation den VOR course und die VOR deviation zur Verfügung
hatte. Das VOR bearing stand ihm jedoch auch auf dem DBI nicht zur Verfügung.
Zusammenfassend kann bezüglich des Einsatzes der Flugführungs- und Navigationsausrüstung
festgehalten werden:
Die Anzeige auf dem Navigationsbildschirm des Piloten kann sehr vielfältig ausgewählt
werden. Durch die Wahl des CRS selector und des 2nd CRS push buttons sind sehr viele
Kombinationen möglich. Eine genaue Aussage bezüglich der gewählten Anzeige kann
deshalb nicht gemacht werden, weil diese Manipulationen nirgends aufgezeichnet werden.
Nichtsdestotrotz lässt sich aus den gefundenen Stellungen der Schalter am Flugzeugwrack
mit grosser Wahrscheinlichkeit sagen, wie die Anzeigen für den Endanflug gewählt
wurden. Nicht erklärbar ist, warum der Schalter am control panel in der Stellung
LNAV 1 war und nicht, wie es den normalen Crossair Flugverfahren entspricht, in der
Stellung SPLIT.
Die gewählte Darstellung scheint nicht optimal gewesen zu sein. Dies war aber mit
grösster Wahrscheinlichkeit nicht unfallrelevant.
2.2.5.3 Warnungen
Das Flugzeug behielt rund eine Minute vor dem Einleiten des Durchstarts eine konstante
Sinkrate von 1200 ft/min bei. Die Untersuchung ergab, dass sich die Bewegungsparameter
der Maschine während des gesamten Endanfluges knapp ausserhalb der Hüllkurven
des mode 1 – excessive sinkrate und mode 2B – excessive terrain closure rate
befanden. Aus diesem Grund wurde keine Warnung des GPWS ausgelöst.
Ein terrain awareness and warning system (TAWS) hätte gegenüber dem im Unfallmuster
verwendeten ground proximity warning system (GPWS) mehrere Vorteile gehabt.
Nähert sich das Flugzeug in Landekonfiguration zu weit weg von der Piste dem
Boden, wird eine optische und akustische Warnung generiert. Dies ist möglich, weil das
TAWS Zugriff auf eine topografische Datenbank des Geländes rund um den Flughafen
hat. Ein solches System hätte die gefährliche Annäherung der HB-IXM an das Gelände
nördlich von Bassersdorf frühzeitig erkennen und die Besatzung entsprechend warnen
können.
Es ist zu erwähnen, dass zum Zeitpunkt des Unfalls für das Baumuster AVRO 146-
RJ100, Mark I (HB-IXM) noch keine genehmigten Einbaudokumente (service bulletin
oder ähnliche) für eine Umrüstung vom GPWS auf ein TAWS, welches die Anforderungen
von TSO C151, Class A erfüllt, vorlagen. Aufgrund der Vorgaben der JAA muss diese
Umrüstung bis 1. Januar 2005 vollzogen sein. Diese Umrüstung betrifft auch die
AVRO 146-RJ85 Flotte. Die AVRO 146-RJ100 Mark II Flugzeuge waren bereits bei der
Ablieferung mit einem TAWS ausgerüstet. Es handelte sich dabei um das von HoneySchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 119 von 152
well hergestellte enhanced ground proximity warning system (EGPWS), welches die
Anforderungen von TSO C151, Class A erfüllt.
Um den Prozess zu beschleunigen, hatte das BFU bereits früh in der Untersuchung die
Sicherheitsempfehlung 2002-5 herausgegeben.
2.2.5.4 Call Outs
Die durch die synthetische Stimme des GPWS ausgegebenen Hinweise zur Höhe bei
500 ft RA („five hundred“) bzw. 300 ft RA („minimums“) sprachen normal an und lösten
bei der Flugbesatzung gewisse Reaktionen aus:
Bei 500 ft RA setzte Unbehagen ein und kurz nach dem call out „minimums“ wurde erwogen,
einen Durchstart einzuleiten.
2.2.5.5 Fehlende Hindernisse auf den Anflugkarten
In der Anflugkarte 13-2 vom 13. November 2000 des Jeppesen route manual, die von
der Besatzung benutzt wurde, waren im Endanflugsektor der Piste 28 keine Flughindernisse
eingetragen. In der Anflugkarte LSZH AD 2.24.10.7-1 des Schweizer Luftfahrthandbuches
AIP, die im Unfallzeitpunkt gültig war, waren zwei Flughindernisse
verzeichnet. Die HB-IXM kollidierte mit dem nördlichen dieser beiden Hindernisse, ein
Hügel mit einer Hindernisbefeuerung auf 1880 ft AMSL. Es ist nicht auszuschliessen,
dass der Kommandant seinen Entscheid, ohne genügende Sichtreferenzen unter die
MDA abzusinken nochmals überdacht hätte, wenn diese Hindernisse auf der Anflugkarte
ersichtlich gewesen wären (vgl. Sicherheitsempfehlung bezüglich Darstellung des
Geländeprofils auf Anflugkarten).
2.2.6 Beziehung zwischen Flugbesatzung und Verfahren (L-S)
2.2.6.1 Allgemeines
Bei der Betrachtung der Beziehung zwischen Flugbesatzung und Verfahren (L-S) standen
Anwendung und Umsetzung von allgemeinen Flugregeln bzw. den durch das Flugbetriebsunternehmen
festgelegten Verfahren im Vordergrund.
2.2.6.2 Übergang vom Instrumentenflug zum Sichtflug
Um 21:03:36 UTC, als sich die Maschine in der Rechtskurve auf die Anfluggrundlinie
des standard VOR/DME approach 28 befand, erwähnte der Kommandant erstmals,
dass er über eine gewisse Sicht auf den Boden verfügte: „Ground contact hämmer…“-
ground contact haben wir. Aufgrund der Position des Flugzeuges könnte er zu diesem
Zeitpunkt die Lichter von Kollbrunn links unten gesehen haben.
Zwischen 21:05:55 UTC und 21:06:21 UTC sprach der Kommandant nochmals von
ground contact und nahm diesen Umstand als Begründung für ein Absinken unter die
Mindesthöhe für den Anflug. Während dieses Zeitraumes überflog das Flugzeug Nürensdorf,
und es ist nahe liegend, dass der Kommandant die Lichter dieser Ortschaft
gesehen hat.
Die Besatzung des kurz vorher auf Piste 28 gelandeten Fluges CRX 3891 meldete, dass
sie erst bei einer Distanz von ungefähr 2.2 NM zum VOR/DME Kloten die Piste sehen
konnte. Aufgrund dieser Meldung und auch mit Blick auf die allgemeinen Wetterbedingungen
auf dem Flughafen Zürich zu diesem Zeitpunkt, kann mit grosser Wahrscheinlichkeit
ausgeschlossen werden, dass die Besatzung von Crossair Flug CRX 3597 während
ihres Anfluges Sichtkontakt mit der Anflug- oder Pistenbeleuchtung hatte. Damit
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 120 von 152
waren die durch JAR-OPS 1 bzw. die im operations manual part A (OM A) des Flugbetriebsunternehmens
festgelegten Kriterien für eine Fortsetzung des Sinkfluges unter die
Mindesthöhe für den Anflug (minimum descent altitude – MDA) nicht gegeben. Der Erfahrungshintergrund
des Kommandanten und die Ausbildungsunterlagen des Copiloten
belegen, dass diese Kriterien beiden Besatzungsmitgliedern bekannt waren, zumal diese
Kriterien schon in den früheren Verfahrensvorgaben definiert wurden und nicht erst
bei Einführung von JAR-OPS 1 im Jahre 1998.
Die Bemerkungen des Kommandanten bezüglich der Bodensicht zeigen, dass er zumindest
zeitweise nach draussen schaute. Aufgrund der Aufgabenverteilung war er fliegender
Pilot und demnach für die Führung des Flugzeuges nach Instrumenten zuständig.
Vor allem die Aussagen des Kommandanten zwischen 21:05:55 UTC und 21:06:21
UTC lassen den Schluss zu, dass er sich zunehmend nach den nur ungenügenden
Sichtreferenzen orientierte. Dieser unbewusste Wechsel zwischen Instrumentenflug
und Sichtflug hat es ihm möglicherweise erschwert, die tatsächliche Position des Flugzeuges
zur Piste in Bezug auf dessen Flughöhe zu erkennen. Die Verfahrensvorgaben
des Flugbetriebsunternehmens (vgl. Kap. 1.17.1.8, OM A 8.4.7.4.15.2 Co-operation on
changeover to visual flying) sehen eine klare Aufgabenverteilung zwischen pilot flying
und pilot not flying für diese Flugphase vor. Die Flugbesatzung hat sich nicht an diese
Vorgaben gehalten.
Wie die Untersuchung zeigte, hat der Kommandant in vergleichbaren Situationen schon
ähnliche Entscheidungen gefällt und Verfahrensvorgaben des Flugbetriebsunternehmens
auf eigene Weise interpretiert. Möglicherweise hat auch der Copilot schon ähnliche
Abweichungen von Verfahrensvorgaben erlebt, was ein weiterer Grund dafür wäre,
dass er nicht intervenierte.
2.2.6.3 Konfiguration während eines non precision approach
Die Verfahrensvorgaben des Flugbetriebsunternehmens sowie die PANS-OPS sahen
vor, dass das Flugzeug vor dem Erreichen des final approach fix (FAF) für die Landung
konfiguriert sein sollte. Die dadurch praktisch unveränderte Fluglage vereinfacht die
Einteilung und Überwachung des Gleitweges während des Endanfluges. Ohne dies bei
der Anflugbesprechung zu erwähnen, entschied sich der Kommandant, den Anflug
schneller als vorgesehen zu beginnen und die Konfiguration des Flugzeuges während
des Endanfluges laufend zu ändern. Dieses Vorgehen hätte eine laufende Anpassung
der Sinkrate an die Geschwindigkeit erfordert, die aber unterblieb (vgl. Anhänge 4 und
10).
2.2.6.4 Altitude setting während eines non precision approach
Das Flugbetriebsunternehmen schrieb im pilots information handbook und in den AVRO
RJ training guidelines vor, dass kurz vor dem Erreichen des final approach fix auf dem
mode control panel (MCP) die go around altitude vorzuwählen sei. Die step altitudes
musste die Besatzung gemäss dieser Vorschrift mit dem altitude hold mode des Autopiloten
gewährleisten. Das Verlassen der jeweiligen Höhe wurde über den vertical speed
mode eingeleitet.
Früher wurde gemäss den Vorschriften des pilots information handbook während des
Endanfluges die minimum descent altitude (MDA) auf dem MCP eingestellt. Dieses Verfahren
schuf ein Sicherheitsnetz, weil damit, ohne Eingriff durch den Piloten, ein automatischer
level off auf der MDA durchgeführt wurde, sofern der Autopilot zugeschaltet
war.
Der Hersteller des Unfallmusters überliess die Einstellung der Höhe auf dem mode
control panel den Betreibern.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 121 von 152
Die Besatzung des Unfallflugzeuges hielt sich in Bezug auf das Setzen der go around
altitude an die gültigen Verfahrensvorgaben des Flugbetriebsunternehmens. Diese haben
gegenüber dem früheren Verfahren der Crossair den Nachteil, dass ein zusätzliches
Sicherheitsnetz eliminiert wurde. Ob der Kommandant beim Erreichen der MDA
den Übergang des Flugzeuges in den Horizontalflug unterbunden hätte, falls das frühere
Verfahren zur Anwendung gekommen wäre, muss offen bleiben.
2.2.7 Schnittstelle Flugbesatzung – Umgebung (L-E)
2.2.7.1 Allgemeines
Bei der Betrachtung der Schnittstelle „Flugbesatzung – Umgebung“ standen das Verhalten
voraus fliegender Flugzeuge, die Wettersituation, die Flugsicherung, die Auslegung
des Anfluges sowie das Flugbetriebsunternehmen und die Aufsichtsbehörde im
Vordergrund.
2.2.7.2 Voraus fliegende Flugzeuge
Wenige Minuten vor dem Unfallflugzeug landeten zwei Flugzeuge des gleichen Flugbetriebsunternehmens
mit den Flugnummern CRX 3891 und CRX 3797 nach dem gleichen
Anflug auf der Piste 28. Der Kommandant realisierte zumindest, dass Flugnummer
CRX 3891 vor ihm landen konnte. Es ist nicht auszuschliessen, dass diese Feststellung
einen gewissen Erfolgsdruck schuf oder zumindest die Hoffnung weckte, dass eine
Landung bei den herrschenden Wetterbedingungen möglich sei.
2.2.7.3 Wettersituation und Wetterminima
Die Wettersituation im Unfallzeitpunkt erlaubte nach den damals gültigen Wetterminima
einen Anflug auf die Piste 28.
Die vorhandene meteorologische Sicht und die Wolken im Anflugsektor der Piste 28
liessen aber gemäss der Wettermeldung von CRX 3891 einen Anflug nur zu, wenn auf
der MDA horizontal bis zu einer Distanz von ca. 2.2 NM zum VOR/DME Kloten geflogen
wurde. Der Endanflug nach Sicht von dieser Position aus entspricht einem Gleitweg
von rund 6° (vgl. Anhang 11).
Dies ist als steil zu bezeichnen, für grössere Flugzeuge unzweckmässig und birgt ein
generelles Risiko im Hinblick auf einen unstabilisierten Endanflug in geringer Höhe.
Für den standard VOR/DME approach 28 war im Unfallzeitpunkt für Flugzeuge der Kategorien
C und D eine minimale Pistensichtweite von 2000 m publiziert. Sind solche
Sichtbedingungen vorhanden, können die ersten approach lights frühestens bei einer
Distanz von 2.3 NM zum VOR/DME Kloten erkannt werden werden (vgl. Anhang 11,
Punkt P-3). Diese Position entspricht einem Abstand von 2 km zum Beginn der Anflugbefeuerung.
Die Minimalsichtweite bei non precision approaches steht grundsätzlich in Relation zur
MDA. Wendet man die Empfehlungen der ICAO (Doc. 9365-AN910, manual of all
weather operations) beim VOR/DME Anflug Piste 28 an, so ergibt sich eine Minimalsicht
von 4000 m für Kategorie C Flugzeuge.
Bemerkenswert ist in diesem Zusammenhang die Beziehung des visual descent point
(VDP) zur minimalen Horizontalsicht. Im Falle des standard VOR/DME approach 28
wäre dieser VDP gemäss Definition der Schnittpunkt des PAPI-Gleitpfades (3.7°) mit
der MDA. Dieser Schnittpunkt liegt bei einer Schrägdistanz von 3.3 NM vom VOR/DME
Kloten, bzw. 2.4 NM (4.4 km) vor der Pistenschwelle (vgl. Anhang 11, Punkt VDP). Um
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 122 von 152
die Anflugbefeuerung, die 650 m lang ist, von diesem Punkt aus sehen zu können,
braucht es demnach eine rechnerische Minimalsicht von 4200 m. Die Simulatorversuche
haben gezeigt, dass bei einer minimalen Horizontalsicht von 5000 m die Anflugbefeuerung
erst 0.2 NM nach Überfliegen des VDP sichtbar wird.
2.2.7.4 Flugsicherung
2.2.7.4.1 Personaleinsatz
Gemäss Sektorbelegungsplan der skyguide hätten zum Zeitpunkt des Unfalles in der
Anflugleitstelle sowie in der Platzverkehrsleitstelle je vier Arbeitspositionen besetzt sein
müssen. Tatsächlich war die Anflugleitstelle nur mit einer Arbeitsposition und die Platzverkehrsleitstelle
mit zwei Arbeitspositionen besetzt.
Nach der Landung des ersten von drei Flugzeugen, die sich auf dem standard
VOR/DME approach 28 befanden, entschied sich der Dienstleiter (DL), die Besatzung
der Platzverkehrsleitstelle auf zwei FVL zu reduzieren. Er selber übergab seine Funktion
dem GRO, verliess kurz nach 21:03 UTC die Turmkanzel und begab sich nach einem
kurzen Aufenthalt im Büro auf den Heimweg.
Die Dienstleiterposition, die gemäss Sektorbelegungsplan bis 22:00 UTC ausgewiesen
ist, war somit nicht mehr durch einen ausgebildeten Dienstleiter besetzt. Der GRO-FVL,
welcher die Aufgabe übernommen hatte, war nicht zum Dienstleiter ausgebildet und
verfügte für diese Tätigkeit über eine geringe Erfahrung.
Es herrschten erschwerte Wetterbedingungen, die Entscheide wie beispielsweise Pistenwechsel
oder Veranlassung der Weiterleitung einer Pilotenmeldung nötig gemacht
hätten. Aus diesem Grund wäre die Anwesenheit eines ausgebildeten Dienstleiters angezeigt
gewesen.
Ob die markante Reduktion der Anzahl besetzter Arbeitsplätze sowohl in der Turmkanzel
als auch in der Anflugleitstelle noch weitere nachteilige Auswirkungen, zum Beispiel
auf die letzte Phase der Betreuung des Fluges CRX 3597 durch die Anflugleitstelle gehabt
hat, muss offen bleiben.
2.2.7.4.2 Auswahl des Anflugverfahrens
Nach den Bestimmungen des Luftfahrtgesetzes hat der Flugplatzhalter dem BAZL das
Betriebesreglement zur Genehmigung zu unterbreiten. Die von Unique im Hinblick auf
den abzuschliessenden Staatsvertrag mit Deutschland beantragte Änderung dieses
Reglementes wurde vom Bundesamt bezüglich der erwähnten Anflüge auf die Piste 28
am 18. Oktober 2001 genehmigt und trat am 19. Oktober 2001 in Kraft.
Diese Übergangsvereinbarungen verunmöglichten es, zwischen 21:00 UTC und 05:00
UTC Flugzeugen über deutschem Staatsgebiet Freigaben für Flughöhen unter FL 100
zu erteilen und zwar unabhängig davon, ob diese Flugzeuge in Eigennavigation flogen
oder mit Radar geführt wurden.
Somit war es zwischen den erwähnten Zeiten aufgrund des herrschenden Wetters und
den publizierten Minima für die Piste 28 nicht erlaubt, ILS-Anflüge auf die Pisten 14
oder 16 durchzuführen. Dementsprechend mussten Anflüge nach Zürich auf einen
standard VOR/DME approach 28 freigegeben werden.
Der standard VOR/DME approach 28 wurde bis zum Inkrafttreten der Übergangsbestimmungen
zum Staatsvertrag am 19. Oktober 2001 nur sporadisch, bei ausgeprägten
Westwindlagen, von der Flugsicherung in Betrieb genommen. Typische Westwindlagen
sind im allgemeinen ausserhalb von Niederschlägen durch gute Sicht und relativ hohe
Hauptwolkenuntergrenzen gekennzeichnet.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 123 von 152
2.2.7.4.3 Durchführung des Standard VOR/DME Approach 28
Der standard VOR/DME approach 28 wird nicht mittels Radarführung sondern in Eigennavigation
geflogen.
Der APP-FVL (A) übergab um 21:03:01 UTC die Maschine an Zurich Aerodrome Control
1 (Zurich tower) bei Beginn der Rechtskurve zur Anfluggrundlinie von 275° Richtung
VOR/DME KLO, ca. 11 NM östlich des Flughafens, ohne sich zu vergewissern, dass
sich Flug CRX 3597 im Endanflug (final approach track) befand. Um 21:05:21 UTC
meldete sich CRX 3597 erstmals auf der Frequenz von ADC 1: „Tower guten Abig, CRX
3597, established VOR/DME runway 28“.
Der APP-FVL (B), der vom APP-FVL (A) die Aufgabe zur Überwachung der CRX 3597
übernahm, hatte gleichzeitig noch einige Abflüge zu betreuen. Er gab an (vgl. Kapitel
1.8.4), dass er die Maschine auf seinem Radarbildschirm sah. Die Höhe derselben habe
er lediglich bei ca. 6 NM bewusst wahrgenommen, als er auf dem Radarbildschirm eine
Höhe von ungefähr 3600 ft feststellte. Er habe keine weiteren Kontrollen der Höhe gemacht,
da sich das Flugzeug in Eigennavigation befand.
2.2.7.4.4 Radarüberwachung
Skyguide hat bezüglich Radarüberwachung (radar monitoring) des standard VOR/DME
approach 28 die Anweisung erlassen, dass der Flugweg zu überwachen sei und nötigenfalls
Korrekturheadings zu erteilen seien. Die Untersuchung hat festgestellt, dass
das Verständnis der befragten Flugverkehrsleiter bezüglich Umfang und praktischer
Durchführung des radar monitoring beim standard VOR/DME approach 28 unterschiedlich
war. Trotz dieser Tatsache steht fest, dass die Anforderungen des radar monitoring
für den Anflug der CRX 3597 erfüllt waren.
2.2.7.4.5 Minimum Safe Altitude Warning System
Nachdem am 14. November 1990 ein Verkehrsflugzeug der Alitalia mit dem Stadlerberg
kollidiert war, wurde durch das BFU eine Sicherheitsempfehlung erlassen, mittels
Einführung eines Warnsystems das Unterschreiten der Mindestsicherheitshöhe zu
überwachen. Obwohl non precision approaches aufgrund ihrer diskreten Höhenstufen
für ein solches Warnsystem geradezu prädestiniert sind, wurde eine solche Ausrüstung
im Anflugsektor 28 nicht installiert. Damit fehlte ein weiteres Sicherheitsnetz, das möglicherweise
den Unfall hätte verhindern können.
Das BFU überwies am 11. April 2002 einen Zwischenbericht an das Bundesamt für Zivilluftfahrt,
der unter anderem die Sicherheitsempfehlung 2002-7 zur Installation eines
MSAW im Anflugsektor der Piste 28 vorschlug (vgl. Kap. 4.1.4).
Die Aufsichtsbehörde (BAZL) hat mit ihrem Schreiben vom 31. Oktober 2002 von skyguide
das Installieren eines MSAW für den Anflug auf die Piste 28 verlangt.
2.2.7.5 Auslegung des Anfluges
Wie die entsprechenden Ausführungen (vgl. Kapitel 1.16.2) zeigen, weicht der standard
VOR/DME approach 28 in gewissen Belangen von den Normen der PANS-OPS ab.
Diese Abweichungen sind bezüglich des Unfallgeschehens nicht direkt ursächlich.
Entspricht die tatsächliche Sicht dem zum Unfallzeitpunkt gültigen Minimum von
2000 m, kann die Anflugbefeuerung frühestens ab einer Distanz von 2.3 NM DVOR KLO
erkannt werden (vgl. Anhang 11, Punkt P-3). Da ein Endanflug nach Sicht von diesem
Punkt aus einem Anflugwinkel von rund 6° zur Pistenschwelle hin entspricht, besteht
die Gefahr eines unstabilisierten Endanfluges in Bodennähe.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 124 von 152
2.2.7.6 Flugbetriebsunternehmen
Über eine Eignungsabklärung beim Eintritt des Kommandanten in das Flugbetriebsunternehmen
im Jahre 1979 liegen keine Unterlagen vor. Die Eignung eines Piloten ergab
sich damals aus dem Besitz einer entsprechenden Lizenz und einer Berufserfahrung,
die ausschliesslich aufgrund seiner Flugerfahrung in Flugstunden beurteilt wurde. Zusätzlich
wurde ein persönliches Gespräch geführt. Eine Eignungsprüfung war auch nicht
vorgeschrieben.
Mit einer Gesamtflugerfahrung von über 4000 Stunden war der Kommandant damals
schon erfahren. Bei der Prüfung für die Musterzulassung SA 226 TC Metroliner II stellte
der vollamtliche Experte des Eidgenössischen Luftamtes gewisse Mängel bezüglich der
Leistungen des Kommandanten fest. Kurze Zeit später übertrug die Aufsichtsbehörde
die periodischen checks von Besatzungen an Experten, die im Flugbetriebsunternehmen
als Piloten beschäftigt waren. Bis zum Eintritt in den ersten Umschulungskurs auf
das Flugzeugmuster MD 80 wurden auf den Checkblättern des Kommandanten selten
negative Kritikpunkte eingetragen (vgl. Anhang 9). Die Checkblätter entsprachen den
Vorgaben des Eidgenössischen Luftamtes bzw. des Bundesamtes für Zivilluftfahrt, waren
aber inhaltlich wenig aussagekräftig. Im Rahmen beider Umschulungskurse auf das
Flugzeugmuster MD 80 stellten die Fluglehrer und Experten, die teilweise einem anderen
fliegerischen Umfeld entstammten, Mängel bezüglich der Leistungen des Kommandanten
fest. Die erwähnten Schwierigkeiten bezogen sich auf grundlegende Elemente
der fliegerischen Fähigkeiten und waren nicht in erster Linie mit dem Flugzeugmuster
MD 80 verbunden. Als der Kommandant schliesslich auf das Flugzeugmuster Avro 146
RJ 85/100 umschulte, wurde er teilweise von Fluglehrern ausgebildet und überprüft,
welche die gleichen Massstäbe und Grundsätze hatten wie in der Flotte Saab 340. Diese
vertraute Umgebung wurde von Verantwortlichen des Flugbetriebsunternehmens
auch als Grund dafür genannt, dass der Kommandant die Umschulung auf dieses
Strahlflugzeug problemlos durchlief.
Diese unterschiedliche Bewertung der Leistungen des Kommandanten lässt den Schluss
zu, dass gewisse Experten und Fluglehrer des Flugbetriebsunternehmens andere Massstäbe
anwandten und die vorliegenden Defizite nicht erkannten. Ebenso wenig gelang
es dem Flugbetriebsunternehmen, die verschiedenen Vorkommnisse während der Berufslaufbahn
des Kommandanten in einem grösseren Zusammenhang zu sehen, Gemeinsamkeiten
und Grundmuster zu erkennen und entsprechende Massnahmen zu
treffen.
Vergleicht man das von Crossair für die Auswahl des Copiloten verwendete Verfahren
mit den entsprechenden Richtlinien von JAR-FCL 3 (vgl. Kap. 1.17.1.5.1), so stellt man
unter anderem folgendes fest:
• Der gesamte Bereich der erfolgskritischen Verhaltensweisen und möglichen psychischen
Defizite wurde nicht erhoben.
• Die flugbetrieblichen Leistungen (operational aptitudes) wurden nicht standardisiert
erhoben, wobei der Einsatz von verlässlichen und genormten Leistungstests fehlte.
Die Beurteilung dieser Faktoren wurde im Rahmen einer Simulatorübung vorgenommen.
Flugsimulatoren eignen sich hierzu nur bedingt und die so erhobenen Daten
sind wenig verlässlich.
• Die für eine Pilotenpersönlichkeit wichtigen Aspekte der Fähigkeit zur Entschlussfassung
(decision making) und zum Umgang mit Drucksituationen (stress coping)
wurden nicht systematisch erfasst.
• Das externe psychodiagnostische Gutachten konzentrierte sich auf die Aspekte Sozialverhalten
und Unternehmertum. Die gemäss JAR-FCL 3 typischen Eigenschaften
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 125 von 152
und Fähigkeiten eines Piloten werden nur am Rande thematisiert, die Dimensionen
der beiden Hauptmerkmale sind jedoch weder klar definiert noch sauber getrennt.
So kommt beispielsweise die Beschreibung des Verhaltens „bleibt sich selber“ und
„bleibt sich selbst“ identisch sowohl bei der Dimension „Emotionale Verträglichkeit“
als auch bei „Individualist“ vor. Die Dimensionen werden dadurch schwer verständlich
und nicht abgrenzbar.
• Die verwendeten Instrumente waren eher einem Auswahlsystem für das Management
entlehnt und entsprechen nur teilweise einem Anforderungsprofil von Piloten.
Es konnte nicht nachgewiesen werden, dass die einzelnen Persönlichkeits- und Leistungsaspekte
der Bewerber unabhängig erfasst werden konnten. Weiter fehlen Belege
dafür, dass das Verfahren bezüglich Objektivität geprüft und optimiert wurde.
Dies ist insofern von Bedeutung, da jedes Auswahlverfahren ein bestimmtes Mass
an subjektiven Einflüssen enthält, die erkannt und kontrolliert werden müssen,
wenn Verzerrungen vermieden werden sollen. Es liegen weder Normen zu den Verfahren,
noch Untersuchungen zur Zuverlässigkeit bzw. Messgenauigkeit vor. Das
Ausmass an Standardisierung, Wiederholbarkeit und Überprüfbarkeit der Messungen
muss deshalb als gering bezeichnet werden. Da Objektivität eine Bedingung der Zuverlässigkeit
und diese wiederum eine Voraussetzung von Validitätsstudien ist, erfüllt
das Auswahlverfahren keine der von JAR-FCL 3 geforderten Qualitätskriterien.
• Das Auswahlverfahren von Crossair weicht von den methodischen Vorgaben von
JAR-FCL 3 auch darin ab, dass keine formalisierten Entscheidungskriterien festgelegt
wurden, um zu entscheiden, ob ein Bewerber angenommen oder abgewiesen wird.
Bei der Eignungsabklärung stellte die Fachstelle für die Pilotenauswahl unter anderem
fest, dass der Copilot über ein noch wenig ausgeprägtes Selbstbewusstsein verfügte
und im Umgang mit Autorität ein tendenziell submissives Verhalten zeigte. Diese Persönlichkeitsmerkmale
wiesen auf einen Bedarf an Schulung bzw. Förderung im Bereich
Selbstsicherheit und Interventionsbereitschaft hin. Der Umstand, dass der Copilot gegen
das Unterschreiten der Mindesthöhe für den Anflug nicht intervenierte, lässt die
Vermutung zu, dass trotz der absolvierten Schulung in crew resource management die
entsprechenden Defizite nach wie vor bestanden.
Wie die Untersuchung zeigte war der Unfallflug kein Einzelfall, bei dem Verfahrensvorgaben
nicht befolgt wurden. Die Gründe für diese Beobachtung liegen unter anderem
im raschen Wachstum des Unternehmens, das einen fortlaufenden Wechsel von
Verantwortungsträgern und Strukturen mit sich brachte. Im Bestreben, kostenbewusst
zu operieren, wurden gelegentlich gewisse Vorgaben tendenziell grosszügig ausgelegt.
Es gelang dem Flugbetriebsunternehmen nicht, bei allen Flugbesatzungen das erforderliche
Sicherheitsbewusstsein zu erzeugen.
Die Flugsicherheitsabteilung der Crossair war von ihren personellen Mitteln her für ein
Unternehmen mit über 80 Flugzeugen bescheiden ausgerüstet. Ihre Einreihung im Bereich
flight operations support war zudem nicht optimal, da der flight safety officer
damit nur noch über mehrere Vorgesetzte Zugang zu den Flotten hatte. Die Flugsicherheitsabteilung
wurde bei Ausbildungs- oder Leistungsproblemen bzw. Verletzung
von Verfahrensvorgaben durch Besatzungen nicht beigezogen. Erst kurz vor dem Unfall
wurde ein vertrauliches Meldesystem eingeführt. Dies alles hatte zur Folge, dass die
Flugsicherheitsabteilung wenig hilfreich war, um eine Verbesserung der genannten
Umstände herbeizuführen.
2.2.7.7 Aufsichtsbehörde
Die konsequente Überwachung des Flugbetriebs durch die Aufsichtsbehörde (Eidgenössisches
Luftamt bzw. das spätere Bundesamt für Zivilluftfahrt) hätte unter UmstänSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 126 von 152
den die Möglichkeit geboten zu erkennen, dass Defizite in Bezug auf die Leistungen
des Kommandanten bestanden. So hat beispielsweise nach der Umschulung auf die SA
226 TC Metroliner ein Inspektor des Eidgenössischen Luftamtes Mängel festgestellt, die
in der Folge bis zum Umschulungskurs auf MD 80 von Experten des Flugbetriebsunternehmens
nur in Einzelfällen bemerkt wurden.
Auch hätte erkannt werden können, dass Besatzungen des Flugbetriebsunternehmens
nicht selten von Verfahrensvorgaben abwichen.
Bis zum Unfallzeitpunkt wurde die Crossair nie einem flugbetrieblichen Audit durch das
BAZL unterzogen. Ebenso wurde die Tätigkeit der im Auftrag des BAZL wirkenden Experten
des Unternehmens nicht überwacht. Dieser Umstand wurde mit knappen Personalressourcen
begründet. Erst am 28. August 2002 wurde die neu in Swiss International
Air Lines Ltd. umbenannte Crossair einem luftverkehrsbetrieblichen Audit unterzogen.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 127 von 152
3 Schlussfolgerungen
3.1 Befunde
3.1.1 Technische Aspekte
• Es gibt keinen Hinweis darauf, dass sich das Flugzeug HB-IXM zum Zeitpunkt des
Unfalls nicht in lufttüchtigem Zustand befand.
• Das ground proximity warning system (GPWS) gab keine Warnungen aus, weil sich
das Flugzeug während seines gesamten Flugweges ausserhalb der Hüllkurven des
mode 1 – excessive descent rate und des mode 2B – excessive terrain closure rate
befand.
• Die für den Anflug verwendeten Navigationshilfen am Boden funktionierten normal.
• Im Anflugsektor der Piste 28 war kein Warnsystem bezüglich der Unterschreitung
von Sicherheitsmindesthöhen (minimum safe altitude warning – MSAW) vorhanden.
3.1.2 Besatzung
• Nach den vorliegenden Unterlagen besass die Besatzung gültige Flugausweise.
• Die Untersuchung ergab keine Hinweise auf eine medizinische Ursache des Unfalls.
• Das Flugbetriebsunternehmen führte bezüglich des Kommandanten keine umfassende
Eignungsabklärung durch.
• Der Kommandant bestand zwei Umschulungskurse auf das Flugzeugmuster MD 80
wegen ungenügenden Leistungen nicht.
• Der Werdegang des Kommandanten zeigt, dass dieser sich nicht immer an Verfahrensvorgaben
gehalten hat.
• Die Eignungsabklärung des Flugbetriebsunternehmens beschreibt den Copiloten als
tendenziell submissiv, nach Harmonie strebend und vital, aber nicht kämpferisch.
• Am Tag vor dem Unfall leistete der Kommandant eine Flugdienstzeit von 15 Stunden
und 31 Minuten.
• Die Ruhezeit des Kommandanten vor dem Unfalltag betrug 10 Stunden und 59 Minuten.
• Im Unfallzeitpunkt betrug die Flugdienstzeit des Kommandanten 13 Stunden und
37 Minuten.
• Eine unternehmensübergreifende Überwachung der Besatzungszeiten zwischen
dem Flugbetriebsunternehmen Crossair und der Flugschule Horizon Swiss Flight
Academy fand nicht statt.
• Am Tag vor dem Unfall leistete der Copilot eine Flugdienstzeit von 10 Stunden und
15 Minuten.
• Die Ruhezeit des Copiloten vor dem Unfalltag betrug 18 Stunden und 49 Minuten.
• Im Unfallzeitpunkt betrug die Flugdienstzeit des Copiloten 4 Stunden und 47 Minuten.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 128 von 152
3.1.3 Flugverlauf
• Die Flugbesatzung stellte gemäss den Verfahrensvorgaben des Flugbetriebsunternehmens
nach dem Verlassen der Ausgangshöhe für den Anflug von 4000 ft QNH
die go around altitude von 6000 ft QNH auf dem mode control panel des Autopiloten
ein.
• Die Verfahrensvorgaben des pilot information handbook sehen vor, dass die Besatzung
vor dem final approach fix (FAF) das Flugzeug für die Landung konfiguriert.
• Die Besatzung konfigurierte das Flugzeug nach dem final approach fix für die Landung,
ohne sich vorgängig darüber abzusprechen.
• Die Änderungen der ATIS-Meldungen bezüglich meteorologischer Sicht und
Hauptwolkenuntergrenze wurden vom Anflugverkehrsleiter (APP-FVL A) nicht an
die Flugbesatzung von CRX 3597 weitergeleitet.
• Der Dienstleiter entschied sich auf Grund des Betriebskonzeptes und der Wetterverhältnisse,
ab 21:00 UTC den standard VOR/DME approach 28 in Betrieb zu
nehmen.
• Der Anflugverkehrsleiter (APP-FVL B) hatte neben der anfliegenden CRX 3597 einige
abfliegende Flugzeuge zu betreuen.
• In der Anflugleitstelle und in der Platzverkehrsleitstelle waren die Arbeitsplätze
nicht gemäss Dienstplan besetzt.
• Die Aufzeichnungen des CVR und die Funkumschriften belegen, dass der Copilot
unmittelbar vor dem Erreichen der Mindesthöhe für den Anflug (minimum descent
altitude – MDA) mit Manipulationen beschäftigt war.
• Die Verfahrensvorgaben des Flugbetriebsunternehmens sahen eine klare Aufgabenverteilung
zwischen pilot flying und pilot not flying für diese Flugphase vor. Die
Flugbesatzung hat sich nicht an diese Vorgaben gehalten.
• Der Kommandant unterschritt bewusst die Mindesthöhe für den Anflug (minimum
descent altitude – MDA) des standard VOR/DME approach 28.
• Der Copilot unternahm keinen Versuch, die Weiterführung des Fluges unter die minimum
descent altitude zu verhindern.
• Keines der Besatzungsmitglieder verfügte über Sichtkontakt zur Piste bzw. zur Anflugbefeuerung.
Damit waren die Bedingungen nicht gegeben, die minimum descent
altitude (MDA) zu verlassen und den Endanflug nach Sicht durchzuführen.
• Das Flugzeug berührte um 21:06:36 UTC, während des Übergangs vom kontrollierten
Sinkflug in einen Durchstart, die Bäume eines Höhenzugs und stürzte anschliessend
in den Wald.
• Der Platzverkehrsleiter löste um 21:10:32 UTC, vier Minuten nach Erteilen der Landefreigabe,
die höchste Alarmstufe aus.
• Der Dienstleiter hatte seinen Arbeitsplatz rund drei Minuten vor dem Unfall verlassen
und die Dienstleitung dem Bodenverkehrsleiter (FVL-GRO) übertragen.
• Der Bodenverkehrsleiter (FVL-GRO) hatte keine Dienstleiterausbildung. Er verfügte
über drei Jahre Berufserfahrung als Flugverkehrsleiter.
• Die Rettungs- und Löschmassnahmen waren zeitgerecht und zweckmässig.
• Der Unfall war nur zufällig überlebbar.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 129 von 152
3.1.4 Rahmenbedingungen
• Die von der Crossair im Zeitpunkt des Unfalls verwendeten Betriebsverfahren für
non presicion approaches entsprachen den Vorgaben des Bundesamtes für Zivilluftfahrt
bzw. der Joint Aviation Requirements JAR-OPS 1.
• Das intermediate approach segment des standard VOR/DME approach 28 betrug
im Unfallzeitpunkt 3.5 NM.
• Für einen Anflug mit der Geometrie des standard VOR/DME approach 28 sehen die
Standards der Internationalen Zivilluftfahrtorganisation (ICAO) PANS-OPS für ein
intermediate approach segment eine Länge von 7 NM vor.
• Die Normen der ICAO sehen vor, dass in einem non precision approach, bei dem
das intermediate approach segment ein Gefälle aufweist, vor dem final approach
fix (FAF) ein horizontaler Abschnitt mit einer Länge von mindestens 1.5 NM einzuplanen
ist. Das Gefälle des intermediate approach segment darf maximal 5 %
betragen.
• Wenn mit dem maximal vorgesehenen Gefälle von 5 % abgesunken wird, ist im
standard VOR/DME approach 28 vor dem final approach fix (FAF) ein horizontaler
Abschnitt von 0.2 NM möglich.
• Ein Teil der Abweichungen des standard VOR/DME approach 28 von den Vorgaben
der ICAO wurden anlässlich einer periodischen Überprüfung im Jahre 2000 festgestellt,
aber nicht veröffentlicht.
• Das final approach segment des standard VOR/DME approach 28 weist vom final
approach fix (FAF) bis zum Punkt mit einer Schrägdistanz von 6 NM vom VOR/DME
KLO ein Gefälle von 5.3 % auf. Das final approach segment von diesem Punkt bis
zu einer Position 50 ft über der Pistenschwelle weist ein Gefälle von 6.3 % auf. Im
Schweizer Luftfahrthandbuch AIP war für das gesamte final approach segment ein
Gefälle von 5.3 % angegeben.
• Das zum Unfallzeitpunkt gültige Sichtminimum für einen standard VOR/DME approach
28 für Flugzeuge der Kategorie C und D betrug gemäss Schweizer Luftfahrthandbuch
AIP 2000 m Pistensichtweite.
• Im Unfallzeitpunkt wurde auf dem Flughafen Zürich eine meteorologische Sicht von
3500 m beobachtet.
• In der Wettermeldung ATIS-Information NOVEMBER von 20:50 UTC wurde die
Hauptwolkenuntergrenze auf einer Höhe von 1500 ft AAL angegeben.
• Die Wolkenangaben in METAR-Meldungen beziehen sich auf das Flughafengebiet
und die unmittelbare Umgebung, die Wolkenangaben in QAM-Meldungen (ATIS)
beziehen sich auf die ehemalige middle marker position der Piste 16.
• Zum Unfallzeitpunkt betrug die Hauptwolkenuntergrenze gemäss Aussagen von Piloten
im Unfallgebiet um 1000 ft AAL.
• Der Schnittpunkt des PAPI-Gleitpfades (3.7°) mit der minimum descent altitude lag
bei einer Schrägdistanz von 3.3 NM vom VOR/DME KLO, bzw. 2.4 NM (4.4 km) vor
der Pistenschwelle. Um die Anflugbefeuerung von diesem Punkt aus sehen zu können,
ist rechnerisch eine Minimalsicht von 3700 m notwendig.
• Rund drei Minuten vor dem Unfall landete Crossair Flug CRX 3891 auf der Piste 28
und die Besatzung meldete, dass sie die Piste bei einer Distanz von ungefähr
2.2 NM zum VOR/DME KLO gesehen habe. Zu diesem Zeitpunkt befand sich dieses
Flugzeug bei einer Distanz von rund 1700 m zur Anflugbefeuerung der Piste 28.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 130 von 152
• Der Höhenzug, den das Flugzeug berührte, war im Schweizer Luftfahrthandbuch
AIP eingetragen. Auf der Anflugkarte 13-2 des Jeppesen route manual, welche die
Flugbesatzung verwendet hatte, fehlte dieses Hindernis hingegen.
• Das von Crossair für die Auswahl von Copiloten verwendete Verfahren entsprach
nur teilweise den Richtlinien der Joint Aviation Requirements flight crew licencing
JAR-FCL 3.
• Das Konzept für die Ausbildung von Flugbesatzungen in crew resource management
(CRM) des Flugbetriebsunternehmens Crossair entsprach den Vorgaben von
JAR-OPS und JAR-FCL.
• Die Flugsicherheitsabteilung hatte 80 Stellenprozente zur Verfügung.
• Die Flugsicherheitsabteilung wurde bei Leistungsproblemen von Flugbesatzungsmitgliedern
nicht informiert.
• Zwischen 1995 und dem Unfallzeitpunkt sind mehr als 40 Vorfälle bekannt, bei denen
Besatzungen eigene Verfahren entwickelt oder Verfahrensvorgaben nicht eingehalten
haben.
• Unterlagen über Inspektionen der Crossair durch den dafür zuständigen Prozess
Luftverkehrsbetriebe (LV) des Bundesamtes für Zivilluftfahrt liegen nicht vor.
• Die Tätigkeit der bei der Crossair angestellten Experten, welche im Auftrag des
BAZL Musterberechtigungen und Leistungsüberprüfungen wie line checks und route
checks vorzunehmen hatten, wurde vom BAZL nicht überprüft.
3.2 Ursachen
Der Unfall ist darauf zurückzuführen, dass die Maschine im Endanflug des standard
VOR/DME approach 28 in Eigennavigation gegen einen bewaldeten Höhenzug flog
(controlled flight into terrain – CFIT), weil die Flugbesatzung unter Instrumentenflugbedingungen
den Sinkflug unter die Mindesthöhe für den Anflug fortsetzte, ohne über
die dazu notwendigen Voraussetzungen zu verfügen. Die Flugbesatzung leitete das
Durchstartmanöver zu spät ein.
Die Untersuchung hat folgende kausale Faktoren für den Unfall ermittelt:
• Der Kommandant unterschritt die Mindesthöhe für den Anflug (minimum descent
altitude – MDA) des standard VOR/DME approach 28, ohne über Sichtkontakt zur
Anflugbefeuerung bzw. zur Piste zu verfügen.
• Der Copilot unternahm keinen Versuch, die Weiterführung des Fluges unter die minimum
descent altitude zu verhindern.
Folgende Faktoren haben zur Entstehung des Unfalls beigetragen:
• Im Anflugsektor der Piste 28 des Flughafens Zürich war kein System vorhanden,
welches bei Unterschreitung einer Sicherheitsmindesthöhe einen Alarm auslöst (minimum
safe altitude warning – MSAW).
• Die Verantwortlichen des Flugbetriebsunternehmens haben über lange Zeit die fliegerische
Leistung des Kommandanten nicht zutreffend bewertet. Dort wo Schwächen
erkennbar waren, ergriffen sie keine zweckmässigen Massnahmen.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 131 von 152
• Das Konzentrations- und Entscheidungsvermögen des Kommandanten sowie seine
Fähigkeit zur Analyse komplexer Vorgänge waren aufgrund von Übermüdung beeinträchtigt.
• Die Aufgabenverteilung der Flugbesatzung während des Anfluges war nicht zweckmässig
und entsprach nicht den Verfahrensvorgaben des Flugbetriebsunternehmens.
• Der Höhenzug, den das Flugzeug berührte, war auf der Anflugkarte, welche die
Flugbesatzung verwendet hatte, nicht eingetragen.
• Die auf dem Flughafen ermittelte meteorologische Sicht war für den Anflug auf Piste
28 nicht repräsentativ, weil sie nicht der tatsächlichen Flugsicht im Anflugsektor
entsprach.
• Die zum Unfallzeitpunkt gültigen Sichtminima, um den standard VOR/DME approach
28 in Betrieb zu nehmen, waren unzweckmässig.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 132 von 152
4 Sicherheitsempfehlungen und Massnahmen zur Verbesserung der Flugsicherheit
4.1 Sicherheitsempfehlungen vom 11. April 2002
4.1.1 Crewpairing – Zusammenstellung von Flugbesatzungen
4.1.1.1 Sicherheitsdefizit
Der Kommandant verfügte über eine hohe Gesamtflugerfahrung, wies aber lediglich eine
geringe Erfahrung auf Flugzeugen mit modernen Flugführungssystemen und wenig
Flugerfahrung auf Flugzeugen mit Strahlturbinenantrieb bzw. auf dem Unfallmuster
auf. Er wurde mit einem jungen Copiloten eingesetzt, der über eine geringe Gesamtflugerfahrung
und ebenfalls über wenige Flugstunden auf Flugzeugen mit Strahlturbinenantrieb
bzw. auf dem Unfallmuster verfügte. Das Unfallgeschehen lässt den Schluss
zu, dass die Besatzungsmitglieder sich nicht zweckmässig ergänzt haben.
Die von der Schweiz übernommenen Vorschriften der JAR-OPS 1 sehen vor, dass beide
Piloten eine bestimmte Mindestflugzeit auf dem entsprechenden Baumuster aufweisen
müssen, bevor sie gemeinsam eingesetzt werden dürfen. Diese Mindesterfahrung war
im vorliegenden Fall vorhanden. Das BFU ist deshalb der Ansicht, dass die rein quantitativen
Kriterien für „inexperienced crews“ nicht ausreichen. Deshalb sollten zusätzliche
qualitative Kriterien erwogen werden, die sicherstellen, dass Besatzungen – unabhängig
von der Flugerfahrung – eine bestimmte Operation oder neue, komplexe Systeme
eines Flugzeuges sicher beherrschen. Erst wenn dieser Fähigkeitsnachweis nach dem
Aufbau einer gewissen Erfahrung (z.B. anlässlich eines line checks oder simulator
checks) erbracht worden ist, gilt der betreffende Pilot als „erfahren“ und kann fortan
mit „unerfahrenen“ Besatzungsmitgliedern eingesetzt werden.
4.1.1.2 Sicherheitsempfehlung 2002-1 (Nr. 33)
Das Bundesamt für Zivilluftfahrt sollte überprüfen, ob Kriterien festgelegt werden können,
nach denen bei der Zusammenstellung einer Flugbesatzung nicht nur der Flugerfahrung
der einzelnen Besatzungsmitglieder Rechnung getragen wird. Insbesondere ist
zu überprüfen, inwiefern Richtlinien bezüglich qualitativer Kriterien festgelegt und geeignete
Kontrollvorgänge für deren Anwendung entworfen werden müssen. Dies um
sicherzustellen, dass bis zum Nachweis der notwendigen Fähigkeiten neu auf einem
bestimmten Flugzeugtyp bzw. in einer bestimmten Operation eingesetzte Besatzungsmitglieder
von einem erfahreneren Besatzungsmitglied geführt bzw. unterstützt werden.
Das Bundesamt für Zivilluftfahrt sollte gegebenenfalls bei der Joint Aviation Authority
(JAA) eine Änderung der diesbezüglichen Vorschriften der JAR OPS 1 vorschlagen.
4.1.1.3 Stellungnahme des Bundesamtes für Zivilluftfahrt vom 6. Mai 2002
“Die angesprochenen Kriterien beim Zusammenstellen einer Flugbesatzung betreffen
sogenannte human factors, also Selbsteinschätzung, Urteilsvermögen, Kennen der eigenen
Limiten, und viele mehr. Diese Faktoren sind 'weich' und ausserdem persönlichen
Schwankungen unterworfen. Sie können nicht absolut quantifiziert oder qualifiziert
werden. Dementsprechend glauben wir nicht, dass diesbezüglich behördlich konkretisierte
Vorgaben und Kontrollen zweckdienlich sind, welche über die heute von der
JAR-OPS festgelegten Auflagen hinausgehen. In erster Linie muss der Operator über
ein Netz verfügen welches feinmaschig genug sein muss um allenfalls kritische Zusammenstellungen
zu erkennen und soweit möglich zu vermeiden. Dabei darf zum Beispiel
nicht allein auf Erfahrung im Sinn von Flugstundenzahl abgestützt werden; ein
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 133 von 152
"Top-Gun-Pilot" kann einen schlechten Tag haben oder kann, in einer gegebenen Zusammensetzung
der Besatzung, überhaupt das Risiko von Konflikten erhöhen. Ausserdem
müssen auch kurzfristige Wechsel in der Zusammenstellung einer Besatzung erfasst,
beziehungsweise gesteuert werden können.
Nach unserer Auffassung führt der Weg über den Dialog mit den Verantwortlichen, etwa
indem an Beispielen das Sicherheitsdenken sichtbar gemacht und gefestigt wird,
und dass das Netz (Verfahren, auch CRM Training) inspiziert und wenn nötig dessen
Anpassung veranlasst wird. Die systematische Entwicklung der Persönlichkeitskompetenzen
(non-technical skills) und deren Einbezug in das System ist der Hauptfaktor zur
weiteren Verbesserung der Flugsicherheit.
Die JAR-OPS 1 Vorschriften in diesem Bereich genügen und brauchen unseres Erachtens
nicht angepasst zu werden.“
4.1.2 Überprüfung der Leistungen von Piloten
4.1.2.1 Sicherheitsdefizit
Der Kommandant der Unfallmaschine war während über 20 Jahren auf Kolbenmotorund
Turbopropflugzeugen eingesetzt. Von 1987 bis 2001 flog er Saab 340 bei der gleichen
Fluggesellschaft. Während dieser Zeit versuchte er mehrfach auf schnellere und
grössere Maschinen umzuschulen. Aufgrund ungenügender Leistungen musste er zwei
Umschulungskurse auf das Flugzeugmuster MD 80 abbrechen und wurde weiter auf
der Saab 340 eingesetzt. Mit dem Ausscheiden der Saab 340 aus der Flotte der Crossair
musste für den Kommandanten ein neues Flugzeug gefunden werden und er wurde
in der Folge im Frühjahr 2001 auf das Flugzeugmuster Avro RJ 85/100 umgeschult.
Das Unfallgeschehen lässt den Schluss zu, dass die Besatzung das Anflugverfahren
durchgeführt hat, ohne sich über die Gesamtsituation und den räumlichen bzw. zeitlichen
Ablauf des Vorgangs genügend bewusst zu sein (lack of situational awareness).
Es liegen verschiedene Hinweise vor, dass die Handlungen der Besatzung von übertriebenem
Selbstvertrauen (overconfidence) und Selbstzufriedenheit (complacency) beeinflusst
waren. Insbesondere wurde der Anflug bewusst unter die minimum descent altitude
fortgesetzt.
Die Untersuchung lässt den Schluss zu, dass bei Crossair möglicherweise noch weitere
Piloten beschäftigt sind, die in ihrer fliegerischen Laufbahn Auffälligkeiten, Einbrüche
ihrer Leistungsfähigkeit oder mangelnde Fähigkeiten aufweisen, die eine Überprüfung
der Leistungen, Kenntnisse und Arbeitsweisen notwendig machen.
4.1.2.2 Sicherheitsempfehlung 2002-2 (Nr. 34)
Das Bundesamt für Zivilluftfahrt sollte die Kriterien, Richtlinien und Verfahren überprüfen,
welche die Auswahl und die Umschulung von Piloten von Flugzeugen mit Kolbenmotor-
bzw. Propellerturbinenantrieb auf Flugzeuge mit Strahltriebwerken bzw. auf
Flugzeuge mit moderner Ausrüstung (z.B. Saab 2000, Embraer, Airbus) regeln.
4.1.2.3 Stellungnahme des Bundesamtes für Zivilluftfahrt vom 6. Mai 2002
„Im Grundsatz gehen wir davon aus, dass Antriebsart und Ausrüstung eines Flugzeugs
nicht ein ausschlaggebendes Kriterium für die Auswahl eines umzuschulenden Piloten
sein soll. Hingegen muss die Umschulung sicherstellen, dass die spezifischen Eigenschaften
einer Antriebsart bekannt und verstanden sind. Die Umschulung auf moderne,
integrierte elektronische Ausrüstungen muss darüber hinaus noch den Anspruch erfülSchlussbericht
HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 134 von 152
len, dass die zugrundeliegende Philosophie, die grundsätzliche Funktionsweise der Systeme
und deren Grenzen, verständlich und eindringlich vermittelt wird.
Die Anforderungen an das Ergebnis einer Umschulung (bezogen auf Flugzeugtyp, Ausrüstung
etc.) sind unseres Erachtens genügend beschrieben und definiert. Wie weit ein
Ausbildner Kriterien für die Auswahl der umzuschulenden Piloten festlegen will, soll in
seinem Ermessen bleiben.
Wichtiger als die genannten technischen Eigenschaften scheint uns aber der Umstand
zu sein, dass mit den angesprochenen Umschulungen in der Regel auch ein Umstieg in
ein anderes betriebliches Umfeld stattfindet. Die Aus- oder Weiterbildung muss in diesem
Fall deutlich über die reine Umschulung hinausgehen. JAR-OPS hält fest, dass bei
einer Umschulung folgende menschen- oder interaktionsbezogenen Elemente (CRM,
cockpit/crew resource management) von Bedeutung sind: "human error and reliability,
error prevention and detection, philosophy of the use of automation (if relevant to the
type), case based studies". Die Rollenverteilung zwischen Ausbildner (Operator) und
Behörde ist dabei sinngemäss gleich wie in der Stellungnahme zur Empfehlung 2002-1
erläutert.“
4.1.2.4 Sicherheitsempfehlung 2002-3 (Nr. 35)
Das Bundesamt für Zivilluftfahrt sollte diejenigen Piloten von Crossair und gegebenenfalls
weiterer Flugbetriebsunternehmen, welche in ihrer Laufbahn Leistungseinbrüche,
Auffälligkeiten oder besondere Vorfälle aufweisen, bezüglich ihrer Leistungen und
Kenntnisse überprüfen. Diese Überprüfung sollte sich nicht nur auf eine Durchsicht der
Pilotendossiers beschränken, sondern eine Langzeitbeobachtung und zumindest stichprobenweise
Kontrollen der Leistungen im Linieneinsatz umfassen. Für Piloten mit ungenügendem
Leistungsausweis sollten in Zusammenarbeit mit der Führung des Flugbetriebsunternehmens
bzw. psychomedizinischer Fachkräfte geeignete Massnahmen getroffen
werden.
4.1.2.5 Stellungnahme des Bundesamtes für Zivilluftfahrt vom 6. Mai 2002
„Hier kommt noch deutlicher als bei den beiden vorherigen Empfehlungen zum Tragen,
dass die Verantwortlichkeiten zwischen Behörde und Flugunternehmen klar geregelt
bleiben müssen. Die Kenntnis der Leistungsentwicklung ihrer Piloten ist eindeutig eine
Voraussetzung zum Durchsetzen der Sicherheitsphilosophie eines Unternehmens. Die
Flottenverantwortlichen müssen ihre "Pappenheimer" kennen, um allenfalls Massnahmen
anordnen zu können. Das notwendige Instrumentarium (Qualifikationen, Auswertung
von betrieblichen Rückmeldungen, Trainingsergebnisse etc.) einzusetzen ist Sache
des Operators. Dazu gehört ausserdem, dass Erkenntnisse gegebenenfalls in die Ausund
Weiterbildung zurückfliessen müssen.
Die Rolle der Behörde besteht auch hier im Sicherstellen, dass ein solches Instrumentarium
besteht und dass es angewendet wird. Nur in besonderen Fällen soll die Behörde,
zum Beispiel durch Inspektionen, direkt aktiv werden.“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 135 von 152
4.1.3 Altitude Setting während eines Non Precision Approach
4.1.3.1 Sicherheitsdefizit
Um 21:04:23 UTC befahl der Kommandant dem Copiloten eine go around altitude von
6000 Fuss auf dem mode control panel zu setzen. Der Copilot bestätigte diese Anweisung.
Das Flugbetriebsunternehmen Crossair schrieb im pilots information handbook (PIH) im
Rahmen der standard flight procedures und in den AVRO RJ training guidelines für die
Phase kurz vor Erreichen des final approach fix, der in Zürich eine Höhe von 4000 ft
AMSL aufweist, folgendes vor:
Auf dem mode control panel (MCP) ist die go around altitude vorzuwählen. (In Zürich
beträgt diese 6000 ft AMSL.) Das Einhalten der step altitudes muss der Pilot mit dem
ALT HOLD mode gewährleisten. Das jeweilige Verlassen dieser Höhen wird durch Wählen
des vertical speed mode eingeleitet. Der target rate of descent (ROD) muss angesprochen
werden.
Das Einhalten der minimum descent altitude (MDA) wird wie bei den Zwischensteps mit
dem ALT HOLD mode gewährleistet. Ferner publizierte die Crossair auf dieser Seite zusätzlich
eine Faustregel zur Festlegung des visual descent points (VDP).
4.1.3.2 Sicherheitsempfehlung 2002-4 (Nr. 36)
Das Bundesamt für Zivilluftfahrt sollte überprüfen, inwiefern die Crossair Standard-
Flugverfahren (standard flight procedure) anzupassen sind. Insbesondere sollte geprüft
werden, ob während eines non precision approach im mode control panel anstelle der
go around alititude (gegenwärtiges Verfahren bei Crossair) die minimum descent altitude
(MDA) eingestellt werden sollte.
4.1.3.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 6. Mai 2002
„Wir sind mit der Empfehlung einverstanden.“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 136 von 152
4.1.4 Terrain Awareness and Warning System
4.1.4.1 Sicherheitsdefizit
Ein terrain awareness and warning system (TAWS) hat gegenüber dem auf dem Unfallmuster
verwendeten einfachen ground proximity warning system (GPWS) mehrere
Vorteile. Die Besatzung wird zum Beispiel gewarnt, falls das Flugzeug in landing configuration
in zu grosser Entfernung von der Piste dem Boden zu nahe kommt. Dies ist
möglich, weil das TAWS Zugriff auf eine topographische database des Geländes hat,
das den Flughafen umgibt.
Dieses System hätte die gefährliche Annäherung der Maschine ans Gelände um Bassersdorf
frühzeitig erkennen und die Besatzung entsprechend warnen können.
Der Gesetzgeber schreibt für Grossflugzeuge, die ab 1. Januar 2001 in Dienst gestellt
wurden, den Einbau eines TAWS zwingend vor. Alle übrigen Grossflugzeuge ohne
TAWS, die bereits vor diesem Datum in Betrieb waren, müssen bis zum 1. Januar 2005
entsprechend umgerüstet werden.
4.1.4.2 Sicherheitsempfehlung 2002-5 (Nr. 37)
Das Bundesamt für Zivilluftfahrt sollte Massnahmen prüfen, die sicherstellen, dass
Grossflugzeuge ohne terrain awareness and warning system (TAWS) raschmöglichst
mit einem solchen System nachgerüstet werden.
4.1.4.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 6. Mai 2002
„Wir sind mit der Empfehlung einverstanden.“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 137 von 152
4.1.5 System der Wetterbeobachtung
4.1.5.1 Sicherheitsdefizit
Wenige Minuten vor dem Absturz der CRX 3597 flogen zwei andere Flugzeuge des gleichen
Flugbetriebsunternehmens einen standard VOR/DME approach 28. Das erste dieser
zwei vorausfliegenden Flugzeuge mit Flugnummer CRX 3891 setzte nach der Landung
auf der Frequenz des Platzverkehrsleiters folgende Wettermeldung ab: „Just for
information, the weather for runway 28 is pretty minimum, so we had runway in sight
about 2.2 DME distance away“. Zu diesem Zeitpunkt befand sich dieses Flugzeug auf
einer Distanz von rund 1700 m zur Anflugbefeuerung der Piste 28 und rund 2400 m
vor der Pistenschwelle.
Dagegen strahlte das ATIS ab 20:50:00 UTC im Rahmen der Information NOVEMBER
folgende Wettermeldung aus:
METAR 242050Z 16002KT 3500 –SN FEW006, BKN015, OVC022, 00/M00 Q1024
8829//99 TEMPO 5000.
Somit lagen wesentliche Unterschiede zwischen den auf dem Flughafen Zürich beobachteten
Wetterbedingungen und den tatsächlichen Verhältnissen im Anflugsektor der
Piste 28 vor.
4.1.5.2 Sicherheitsempfehlung 2002-6 (Nr. 38)
Das Bundesamt für Zivilluftfahrt sollte überprüfen, ob das aktuelle System der Wetterbeobachtung
ab Piste 16 und die Konfiguration der Messinstrumente geeignet ist, vor
allem bei kritischen Wetterbedingungen eine Wettermeldung zu liefern, die auch für die
Piste 28 gleichwertige Aussagen wie für die Pisten 14/16 ergeben. Insbesondere wenn
das Wetter für den Anflugsektor der Piste 28 schlechter oder wechselhafter ist als für
den ganzen Flughafen, sollte den Besatzungen ein spezifischer Wetterbericht geliefert
werden.
Bis zur Einführung einer verbesserten Wetterbeobachtung sollten die nach dem Unfall
von Flug CRX 3597 erhöhten Minima für den Anflug auf Piste 28 beibehalten werden.
4.1.5.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 5. Dezember 2003
„Der Ceilometer-Wert Bassersdorf zur Beurteilung der Wolkenuntergrenze soll durch
einen local report für die jeweilige Anflugachse ersetzt werden.“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 138 von 152
4.1.6 Installation eines Minimum Safe Altitude Warning System (MSAW) für den
Anflugsektor der Piste 28 in Zürich-Kloten
4.1.6.1 Sicherheitsdefizit
Gemäss standard VOR/DME approach 28 in Zürich-Kloten, wie er auf der instrument
approach chart ICAO AIP LSZH AD 2.24.10.7 – 1 beschrieben ist, lag die Mindesthöhe
für den Anflug (minimum descent altitude – MDA) bei 2390 ft QNH. Es ist vorgesehen,
dass eine anfliegende Maschine die MDA bzw. die obstacle clearance altitude (OCA)
nur unterschreitet, wenn Sichtkontakt mit definierten Elementen der Piste 28 besteht.
Bei etwa 3.5 NM Distanz zur Pistenschwelle, d.h. 4.4 NM VOR/DME Kloten, hat Flug
CRX 3597 die OCA/MDA von 2390 ft AMSL unterschritten und ist daraufhin weiter kontinuierlich
abgesunken. Schliesslich kollidierte das Flugzeug bei etwa 2.7 NM Distanz
zur Pistenschwelle mit einer bewaldeten Anhöhe.
Nach dem Unfall von Alitalia Flugnummer AZA 404 vom 14. November 1990 wurden
die Anflüge der Pisten 14 und 16 mit einem minimum safe altitude warning (MSAW)
system ausgerüstet. Durch eine optische Warnung auf dem Radarschirm und einer
akustischen Warnung macht das MSAW system den Flugverkehrsleiter darauf aufmerksam,
wenn ein Flugzeug im Anflug eine Sicherheitshöhe unterschreitet. Der Flugverkehrsleiter
kann so die Besatzung des betreffenden Flugzeuges warnen.
Der Anflug der Piste 28 war nicht mit einem MSAW system ausgerüstet.
Wäre ein MSAW system vorhanden gewesen, so hätte dieses mit hoher Wahrscheinlichkeit
den Alarm zu einem Zeitpunkt ausgelöst, der es der Flugverkehrsleitung erlaubt
hätte, die Besatzung noch rechtzeitig zu warnen. Diese Alarmauslösung hätte im vorliegenden
Fall nach Unterschreiten des empfohlenen Gleitwegs durch CRX 3597, spätestens
jedoch beim vorzeitigen Verlassen der OCA/MDA erfolgen müssen. Dabei wären
auch im ungünstigsten Fall noch etwa 20 Sekunden verblieben, um die Besatzung
über die gefährlich tiefe Flughöhe zu warnen.
4.1.6.2 Sicherheitsempfehlung 2002-7 (Nr. 39)
Das Bundesamt für Zivilluftfahrt sollte veranlassen, dass der Anflugsektor der Piste 28
mit einem minimum safe altitude warning system ausgerüstet wird, das automatisch
optisch und akustisch auf kritische Höhenunterschreitungen aufmerksam macht. Die
Betriebsvorschriften der Flugverkehrsleitung sind anschliessend mit Vorschriften zur
Warnung von Besatzungen bei derartigen kritischen Höhenunterschreitungen zu ergänzen
(analog zu dem bereits für die Anflugsektoren der Pisten 14 und 16 installierten
MSAW-System).
4.1.6.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 5. Dezember 2003
(Am 31. Oktober 2002 bzw. am 23. Dezember 2002 hatte das BAZL skyguide schriftlich
beauftragt, ein MSAW im Anflugsektor der Piste 28 zu installieren.)
„Das MSAW 28 ist operationell in Betrieb.“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 139 von 152
4.1.7 Eintragung von Flughindernissen im Jeppesen Route Manual
4.1.7.1 Sicherheitsdefizit
In der Anflugkarte (13-2, 10 NOV 00) des Jeppesen route manual, das von der Besatzung
benützt wurde, sind die Flughindernisse im Anflugsektor der Piste 28 nicht eingetragen.
In der publizierten Anflugkarte des Schweizer Luftfahrthandbuches AIP (LSZH
AD 2.24.10.7-1) sind diese Flughindernisse verzeichnet.
4.1.7.2 Sicherheitsempfehlung 2002-8 (Nr. 40)
Das Bundesamt für Zivilluftfahrt sollte darauf hinwirken, dass in weit verbreiteten Publikationen
wie z. B. dem Jeppesen route manual die Flughindernisse unter Anflügen
eingetragen werden.
4.1.7.3 Stellungnahme des Bundesamtes für Zivilluftfahrt (BAZL) vom 5. Dezember 2003
„Lido und auch Jeppesen sind vom BAZL aufgefordert worden, dieser Empfehlung Folge
zu leisten.“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 140 von 152
4.2 Sicherheitsempfehlungen vom 2. Oktober 2003
4.2.1 Definition und Publikation eines Visual Descent Points
4.2.1.1 Sicherheitsdefizit
Der visual descent point (VDP) ist derjenige Punkt auf der minimum descent altitude
(MDA) eines non approach, von dem aus ein normaler Sichtanflug auf die Piste möglich
ist. Ist eine visuelle Gleitweganzeige, z. B. ein precision approach path indicator (PAPI)
vorhanden, so ist der VDP der Schnittpunkt dieses Gleitweges mit der MDA. Bei einem
non precision approach ist nur der missed approach point (MAP) definiert.
4.2.1.2 Sicherheitsempfehlung Nr. 94
Das BAZL sollte überprüfen in welchem Umfang die Anflugkarten für non precision approaches
mit einem visual descent point (VDP) zu ergänzen sind.
4.2.1.3 Stellungnahme des BAZL
Die Stellungnahme des BAZL ist noch ausstehend.
4.2.2 Publizierte Mindestsichtweiten bei Non Precision Approaches
4.2.2.1 Sicherheitsdefizit
Die Untersuchung hat gezeigt, dass die im Unfallzeitpunkt gültigen Mindestsichtweiten
für den standard VOR/DME approach 28 nicht zweckmässig sind. Zudem wurden deutliche
Unterschiede zwischen den Empfehlungen der JAR und der ICAO festgestellt.
Eine Mindestsichtweite kann nur dann als sinnvoll bezeichnet werden, wenn sie erlaubt,
vom visual descent point (VDP) aus den Endanflug mit den notwendigen Sichtreferenzen
durchführen zu können.
4.2.2.2 Sicherheitsempfehlung Nr. 95
Das Bundesamt für Zivilluftfahrt sollte überprüfen, in wie fern die gültigen Mindestsichtweiten
für non precision approaches anzupassen sind, damit vom visual descent
point aus ein Endanflug mit den notwendigen Sichtreferenzen möglich ist.
4.2.2.3 Stellungnahme des BAZL
Die Stellungnahme des BAZL ist noch ausstehend.
4.2.3 Darstellung des Geländeprofils auf Anflugkarten
4.2.3.1 Sicherheitsdefizit
Viele Flugplätze in der Schweiz haben in ihrer unmittelbaren Umgebung Geländeerhebungen
welche deutlich über der Bezugshöhe des Flugplatzes liegen.
Durch eine Darstellung des Geländeverlaufs in einer Seitenansicht, entlang des Anflugweges,
können Hindernisse im Anflug bewusster gemacht werden.
4.2.3.2 Sicherheitsempfehlung Nr. 96
Das Bundesamt für Zivilluftfahrt sollte überprüfen, ob das Geländeprofil entlang des
Anflugweges in die Anflugkarten von Instrumentenanflügen aller Kategorien eingetragen
werden müsste.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 141 von 152
4.2.3.3 Stellungnahme des BAZL
Die Stellungnahme des BAZL ist noch ausstehend.
4.2.4 Besatzungszeiten
4.2.4.1 Sicherheitsdefizit
Am Vortag des Unfalls war der Kommandant 15 Stunden und 31 Minuten im Einsatz,
weil er vor den vier Sektoren, die er im Rahmen des Flugbetriebsunternehmens durchführte,
bereits zwei IFR-Schulflüge absolviert hatte. Die vorgeschriebene Ruhezeit wurde
nicht eingehalten. Im Zeitpunkt des Unfalls war der Kommandant bereits 13 Stunden
und 37 Minuten im Einsatz weil er vor dem Unfallflug bereits drei IFR-Schulflüge
durchgeführt hatte. Die Aufzeichnungen der Flugdienstzeiten zeigen, dass diese Kombination
von Schulungstätigkeit und Einsatz als Verkehrspilot am selben Tag keine Seltenheit
war. Eine unternehmensübergreifende Kontrolle der Besatzungszeiten wurde
nicht durchgeführt.
Wie das Unfallgeschehen belegt, zeigte der Kommandant des Unfallflugzeuges in seinem
Verhalten Anzeichen von Übermüdung.
4.2.4.2 Sicherheitsempfehlung Nr. 97
Das Bundesamt für Zivilluftfahrt sollte zusammen mit den Flugbetriebsunternehmen
überprüfen, wie eine lückenlose Kontrolle der gesamten Flugdienst- und Ruhezeiten
gewährleistet werden kann.
4.2.4.3 Stellungnahme des BAZL
Die Stellungnahme des BAZL ist noch ausstehend.
4.2.5 Verbesserung des Qualitätsystems von Flugbetriebsunternehmen
4.2.5.1 Sicherheitsdefizit
Die Untersuchung zeigte, dass es schon vor dem Unfall Besatzungen gab, die Vorgaben
und Verfahren nicht befolgt haben. Die Anstrengungen des Flugbetriebsunternehmens
auf dem Gebiet der Flugsicherheit sowie die Überwachungsmassnahmen des Bundesamtes
für Zivilluftfahrt reichten nicht aus, um diese Vorfälle zu erkennen und zu verhindern.
4.2.5.2 Sicherheitsempfehlung Nr. 98
Das Bundesamt für Zivilluftfahrt sollte im Rahmen des nach den Bestimmungen der
Joint Aviation Authorities (JAA) über die gewerbsmässige Beförderung von Personen
und Sachen in Flugzeugen JAR-OPS 1.035 geforderten Qualitätssystems von den Flugbetriebsunternehmen
Verfahren verlangen und überwachen, die durch unternehmensinterne
Massnahmen Mängel in der Verhaltens- und Arbeitsweise der Flugbesatzungen
aufzeigen und beheben.
4.2.5.3 Stellungnahme des BAZL
Die Stellungnahme des BAZL ist noch ausstehend.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 142 von 152
4.2.6 Abnahme von Fähigkeitsnachweisen und Befähigungsüberprüfungen
4.2.6.1 Sicherheitsdefizit
Die Untersuchung zeigte, dass es dem Flugbetriebsunternehmen über einen grossen
Zeitraum nicht gelang, die tatsächliche Leistungsfähigkeit eines Besatzungsmitglieds zu
ermitteln. Die für die Abnahme von skill tests, proficiency und line checks eingesetzten
Experten, welche beim Flugbetriebsunternehmen angestellt waren und diese Prüfungen
im Auftrag des Bundesamtes für Zivilluftfahrt vornahmen, waren mehrheitlich nicht in
der Lage, Mängel und Schwächen zu erkennen, so dass sich diese im Unfallgeschehen
auswirken konnten.
4.2.6.2 Sicherheitsempfehlung Nr. 99
Das Bundesamt für Zivilluftfahrt sollte veranlassen, dass Fähigkeitsnachweise und Befähigungsüberprüfungen
zumindest stichprobenweise von Inspektoren oder unabhängigen
Experten des Bundesamtes abgenommen werden.
4.2.6.3 Stellungnahme des BAZL
Die Stellungnahme des BAZL ist noch ausstehend.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 143 von 152
4.3 Seit dem Unfall getroffene Massnahmen zur Verbesserung der Flugsicherheit
4.3.1 Stellungnahme von Swiss vom 14. Februar 2003
Das Flugbetriebsunternehmen Crossair, dessen Firmenname in der Zwischenzeit auf
Swiss International Air Lines Ltd. gewechselt hatte, gab am 14. Februar 2003 an, im
Nachgang zum Unfall von CRX 3597 die folgenden Massnahmen getroffen zu haben:
Zitat:
1. „Approach and Landing Accident Reduction“ (ALAR)
Eine Analyse zur Beurteilung von Potentialen zur Reduktion der Anflug- und Landerisiken,
die unmittelbar nach dem Unfall vom 24. November 2001 durch den damals
zuständigen „Emergency Director“ in Auftrag gegeben wurde. Die dabei angewendeten
Kriterien wurden von der unabhängigen „Flight Safety Foundation“ definiert.
2. “Operational Risk Analysis and Control” (ORAAC)
Aus der unter Pt. 1 erwähnten “ALAR” Analyse wurden Erkenntnisse gewonnen, die
insgesamt 81 Aktionspunkte umfasst und zur Zusammenstellung eines Aktionsplans mit
dem Arbeitstitel “Operational Risk Analysis and Control” (ORAAC) führte. Dieser Aktionsplan
hatte zum Ziel, mögliche Schwachstellen in der Operation offen zu legen um
dadurch gute Voraussetzungen zu schaffen, die dabei entdeckten Lücken schliessen zu
können.
Im Rahmen des ORAAC Aktionsplans wurden unter anderem folgende Massnahmen
umgesetzt:
• Klarifizierung und/oder Ergänzungen in den Pilotenhandbüchern „Operation Manuals“
• Verbesserung der technischen Ausrüstungen in den Regionalflugzeugen
• Anpassungen bei der Aus- und Weiterbildung der Besatzungen
• Gezielte Prüfung der Leistungsfähigkeit bestimmter Besatzungsmiglieder „Screening-
1“ mit Umsetzung geeigneter Massnahmen zur Behebung festgestellter Defizite bzw.
(wo angezeigt) Auflösung der Arbeitsverhältnisse.
• Institutionalisierung eines jährlichen Qualifikationsprozesses, der flottenübergreifend
geführt wird und wo nötig unmittelbar wirksame Massnahmen auslöst.
Bis Ende 2002 konnten 95 % aller unter ORAAC festgelegten Massnahmen umgesetzt
werden.
3. Flight Safety und Flight Crew Training als Brückenfunktion
Im Zusammenhang mit dem Aufbau der SWISS wurden die Zuständigkeiten der Funktionen
“Flight Safety” und “Flight Crew Training” im Sinne sogenannter Brückenfunktionen
über beide Pilotenkorps, OC-1 (ex Crossair) und OC-2 (ex Swissair), ausgedehnt.
Dadurch konnte sichergestellt werden, dass die diesbezüglichen Kompetenzen beider
ehemaligen Fluggesellschaften nach Massstäben des „best-practice“ zur Wirkung gebracht
und nachhaltig erhalten werden können.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 144 von 152
4. “SWISS Safety Advisory Board” (SSAB)
Im Verlauf der ersten Jahreshälfte 2002 beauftragte die Geschäftsleitung ein externes,
international anerkanntes Team von Experten im Bereich Flugsicherheit mit der Überprüfung
des Flugsicherheitsstandards in der SWISS.
Dieses Team verfasste einen Zwischenbericht mit Datum vom 5./6. September 2002
und rapportierte ihre Erkenntnisse mit entsprechenden Empfehlungen direkt dem Verwaltungsrat.
Die Umsetzung der SSAB Empfehlungen wurden vom Bereicht „Flight
Operations“ umgehend an die Hand genommen (siehe Pt. 6).
5. IST-SOLL Analyse des “Flight Safety Officers”
Im Auftrag des Flugbetriebsleiters hat die verantwortliche Fachstelle für Flugsicherheit
eine IST-SOLL Analyse betreffend aktuellem Potential im Hinblick auf die weitere Erhöhung
des Sicherheitsstandards durchgeführt. Die Resultate wurden im entsprechenden
Bericht vom 12. September 2002 festgehalten und dem Flugbetriebsleiter zur Behandlung
übergeben. Die Umsetzung der darin enthaltenen Empfehlungen wurden zusammen
mit jenen des SSAB umgehend an die Hand genommen (siehe Pt. 6).
6. “Flight Safety Program” (FSB)
Die Erkenntnisse bzw. Empfehlungen aus dem unter Pt. 4 erwähnten SSAB, der unter
Pt. 5 erwähnten IST-SOLL Analyse des „Flight Safety Officers“ sowie den internen Berichten
betreffend dem Unfall Werneuchen vom 10. Juli 2002 und dem OC-1 Führungsseminar
vom 3./4. September 2002 wurden im Rahmen des sogenannten „Flight Safety
Program“ (FSB) zu einem umfassenden und ganzheitlichen Massnahmenprogramm zusammen
gefasst.
Die Umsetzung der darin enthaltenen Massnahmen wird in monatlichem Rhythmus
kontrolliert und dem Verwaltungsrat in Form eines Statusberichts jeweils direkt rapportiert.
Nachstehend eine Zusammenfassung des Aktionsplans mit aktuellem Status:
Aktion Beschreibung Status Februar 2003
Screening-2 Prüfung der Leistungsnachweise
sämtlicher Piloten
der SWISS und ggf.
Einleitung entsprechender
Korrekturmassnahmen mit
Controlling
Abschluss April/03
Kultur-CRM 2-Tageskurse zur Zusammenführung
der beiden
Kulturen
Management abgeschl.
Instruktoren abgeschl.
Basiskurs bis 12/05
Organisation „Flight Safety“ und „Security“
werden direkt dem COO
unterstellt.
Abgeschlossen
Rapportwesen Monatlicher Rapport durch
den „Flight Safety Officer“
betreffend Status der Flugsicherheit
an COO und CEO
Eingeführt
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 145 von 152
„Operations-„ und „Air Safety
Report“ neu definiert
und eingeführt.
IT-Lösung zur EDVErfassung
Einführung und Förderung
eines „non-punitive“ Rapportwesens
Erledigt
Abschluss März/03
Abgeschlossen
Flugüberwachung Einbau von „Flight Data
Monitoring“ Ausrüstung in
Regionalflotten
EMB-145 ab 03/03
Abschluss 12/05
Sicherheitsbewusstsein Kurse in „Safety-
Awareness“ z. Hd.
Verwaltungsrat
GL und “Vice Presidents”
Abgeschlossen
Abschluss April/03
Sicherheitsprozesse Harmonisierung der Prozesse
zwischen Piloten und
Kabinenbesatzungen zur
Sicherstellung eines hohen
Sicherheitsstandards
Abschluss März/03
Kapitänsanstellungen Keine Neuzulassung als Kapitän
ohne mind. 5 Jahre
Erfahrung bei SWISS und
min. 25 Altersjahren
Umgesetzt
OCC-Unterstützung Optimierung der Unterstützung
z. G. von Besatzungen
bei schwierigen
Wetter-bedingungen
Umsetzung läuft
Abschluss Okt./03
Flugplanung Erhöhung der Systematisierung
bei der Flugplanung
Umgesetzt
Dokumentation Information über Notflugplätze
in Unterlagen integrieren
Abschluss Juli/03
Disziplin Spezielles Programm zur
Förderung der Disziplin
Umsetzung läuft
Qualifikationen Institutionalisierung eines
jährlichen Qualifikationsprozesses
zur Gewährleistung
nachhaltiger Pilotenqualität
Abgeschlossen
Ende Zitat.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 146 von 152
4.3.2 Stellungnahme von Swiss vom 8. Dezember 2003
Mit Stellungnahme vom 8. Dezember 2003 übermittelte Swiss International Air Lines
Ltd. folgenden aktualisierten Aktionsplan:
Zitat:
Aktion Beschreibung Status Dezember 2003
Screening-1 & 2 Prüfung der Leistungsnachweise
sämtlicher Piloten
der SWISS und ggf.
Einleitung entsprechender
Korrekturmassnahmen mit
Controlling
Abgeschlossen
Umschulungsassessment UK-Assessment mit Leistungsbeurteilung
vor Umschulungen
Eingeführt
Basisselektion Überarbeitung der Basisselektion
bei SWISS im
Hinblick auf JAR-FCL 3
Empfehlungen
Erledigt
Kultur-CRM 2-Tageskurse zur Zusammenführung
der beiden
Kulturen
Management und Instruktoren
abgeschl.
Organisation Flight Safety und Security
werden direkt dem COO
unterstellt.
Abgeschlossen
Flugverfahren / SOP / Wordings
Harmonisierung der Flotten Abgeschlossen
Rapportwesen Monatlicher Rapport durch
den Flight Safety Officer
betreffend Status der Flugsicherheit
an COO und
CEO.
Operations- und Airsafety
Report neu definiert und
eingeführt.
IT-Lösung zur EDV Erfassung.
Enführung und Förderung
eines „non-punitive“ Rapportwesens.
Eingeführt
Erledigt
Eingeführt
Erledigt
Flugüberwachung Einbau von „Flight Data
Monitoring“ Ausrüstung in
Regionalflotte
Auswertung der DFDRDaten
läuft, Umrüstung abgeschlossen
12/05
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 147 von 152
Sicherheitsbewusstsein Kurse in „Safety-Awareness“
zHd VR, GL und VPs
Abgeschlossen
Sicherheitsprozesse Harmonisierung der Prozesse
zwischen Piloten und
Kabinenbesatzungen zur
Sicherstellung eines hohen
Sicherheitsstandards
Abgeschlossen
Kapitänsanstellungen Keine Neuzulassungen als
Kapitän ohne min. 5 Jahre
Erfahrung bei SWISS und
min. 25 Altersjahre
Umgesetzt
OCC-Unterstützung Optimierung der Unterstützung
z.G. von Besatzungen
bei schwierigen Wetterbedingungen
Umgesetzt
Flugplanung Erhöhung der Systematisierung
bei der Flugplanung
Umgesetzt
Dokumentation Information über Notflugplätze
in Unterlagen integrieren
Umgesetzt
Disziplin Spezielles Programm zur
Förderung der Disziplin
Umsetzung läuft
Qualifikationswesen Institutionalisierung eines
jährlichen Qualifikationsprozesses
zur Gewährleistung
nachhaltiger Pilotenqualität
Qualifikations Datenbank
Weiterausbildung und
Überwachung der Instruktoren
Eingeführt
Eingeführt
Umgesetzt
Ende Zitat.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 148 von 152
Glossar
AAL above aerodrome level über Flugplatzhöhe
AC alternate current Wechselstrom
ADC aerodrome control (tower) Platzverkehrsleitstelle
ADC air data computer
ADF automatic direction finding equipment
automatisches Peilgerät
ADS air data system
AFS automatic flight system automatische Flugregelungsanlage
AGL above ground level über Grund
ALN align
ALT HLD altitude hold
AMOS airline maintenance organisation
system
AMSL above mean sea level über der mittleren Meereshöhe
AND attitude nose down
ANU attitude nose up
AP autopilot Autopilot
APA altitude preselector alerter
APE approach control east
APP approach control office Anflugleitstelle
APU auxiliary power unit Hilfsaggregat
APRON apron Vorfeld
APW approach control west
ATA American Transport Association
ATC air traffic control Flugverkehrsleitung
ATCO air traffic control officer Flugverkehrsleiter
ATIS automatic terminal information service
ATPL air transport pilot licence Führerausweis für Verkehrspiloten
ATT attitude
BATT battery Batterie
BAZL Bundesamt für Zivilluftfahrt
BEA Bureau Enquêtes Accidents Französische Behörde für die Untersuchung
von Flugunfällen
BFU Büro für Flugunfalluntersuchungen
BKN broken 5-7 Achtel Bewölkung
BRG bearing
B-RNAV basic area navigation Flächennavigation
CA cabin attendant Flugbegleiter/in
CAD computer aided design
CAM cockpit area microphone Raummikrophon
CB circuit braker Sicherungsautomat
CCA circuit card assembly
CDU control display unit Bedieneinheit
CDR commander
CEO chief executive officer
CFIT controlled flight into terrain Kollision mit dem Gelände aus einem
kontrollierten Flugzustand
CLB climb Steigflug
CLD clearance delivery
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 149 von 152
COPI copilot
CPL commercial pilot licence Führerausweis für Berufspiloten
CPM cockpit procedure mockup
CPU central processor unit
CRM crew resource management
CRS course
CRT cathode ray tube Bildröhre, Bildschirm
CVR cockpit voice recorder Sprach- und Geräuschaufzeichnungsgerät
DA decision altitude
DADC digital air data computer
DBI distance bearing indicator
DC direct current Gleichstrom
DDL deferred defect list
DEP departure control Abflugleitstelle
DFDR digital flight data recorder digitaler Flugdatenschreiber
DFGC digital flight guidance computer
DFGS digital flight guidance system
DGAC direction générale de l’aviation civile
DH decision height
DL Dienstleiter
DME distance measuring equipment Entfernungsmessgerät, mit dem eine
Schrägdistanz vom Luftfahrzeug zur
Bodenstation gemessen wird
DOC designated operational coverage Gebiet, in dem ein bestimmter Dienst
verfügbar ist und welchem die zu diesem
Dienst gehörenden Frequenzen
geschützt sind
DTO direct to
DU display unit Anzeigegerät
DVOR doppler VOR Doppler-VOR
ECP EFIS control panel
EFIS electronic flight instrument system elektronisches Fluginstrumentensystem
EGPWS enhanced ground proximity warning
system (Honeywell brand name)
ELC engine life computer
ELEV elevation Ortshöhe über Meer
ELT emergency locator trasmitter Notsender
EMI electromagnetic interference Elektromagnetische Verträglichkeit
ESS essential
FAA Federal Aviation Authority Zivilluftfahrtbehörde der Vereinigten
Staaten von Amerika
FADEC full authority digital engine control Triebwerksteuerung
FAF final approach fix Endanflug-Punkt
FD flight director Flugleitanlage
FDR flight data recorder Flugdatenschreiber
FDAU flight data acquisition unit Flugdatenerfassungsmodul
FDEP flight data entry panel
FEW 1-2 Achtel Bewölkung
FGC flight guidance computer
FGS flight guidance system
FIR flight information region Fluginformationsgebiet
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 150 von 152
FL flight level Flugfläche
FMS flight management system
F/O first officer
FOCA Federal Office for Civil Aviation
FOM flight operatios manual
ft feet Fuss (1 ft = 0.3048 m)
FVL Flugverkehrsleiter
G/A go around Durchstart
GAC general aviation center
GNLU global navigation landing unit
GPS global positioning system
GPU ground power unit Bodenstromversorgung
GPU global position unit
GPWC ground proximity warning computer
GPWS ground proximity warning system Bodennähe-Warnsystem
GRO ground control
G/S glide slope
HDG heading Steuerkurs
hPa hecto pascal
IAS indicated airspeed angezeigte Fluggeschwindigkeit
ICAO International Civil Aviation Organization
Internationale Zivilluftfahrtorganisation
IFR instrument flight rules Instrumentenflugregeln
IGS instrument guidance system Instrumentenführungssystem
ILS instrument landing system Instrumentenlandesystem
IMC instrument meteorological conditions
Instrumentenwetterbedingungen
IPG IFR procedure group
IR instrument rating Instrumentenflugberechtigung
IRS inertial reference system
IRU inertial reference unit
JAA Joint Aviation Authorities
JAR Joint Aviation Requirements
KIAS knots indicated airspeed angezeigte Fluggeschwindigkeit in
Knoten
kt knots Knoten (1 kt = 1 NM/h)
LAT latitude geographische Breite
LNAV lateral navigation
LONG longitude geographische Länge
LT local time Lokalzeit
MAG magnetic
MAP missed approach point
MCP mode control panel
MCT maximum continuous thrust
MDA minimum descent altitude Mindesthöhe für den Anflug über Meer
MDH minimum descent height Mindesthöhe für den Anflug über einer
Bezugshöhe
METAR aviation routine weather report Flugplatzwettermeldung
MHz megahertz
MOC minimum obstacle clearance
MRT multi radar tracking Mehrfachradarerfassung
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 151 von 152
MSAW minimum safe altitude warning system
MSTR master
MSU mode select unit
ND navigation display
NDB non directional beacon ungerichtetes Funkfeuer
NDB navigation data base
NM nautical mile Nautische Meile (1 NM = 1.852 km)
NMS navigation management system
NOAA national oceanic and athmospheric
administration
NVM nonvolatile memory Dauerspeicher
OAT outside air temperature Aussentemperatur
OCH obstacle clearance height
OM operations manual
OVC overcast 8 Achtel Bewölkung
PANSOPS
procedure for air navigation services
- operations
PAPI precision approach path indicator
PF pilot flying fliegender Pilot
PFD primary flight display
PIC pilot in command Kommandant
PLA power lever angle Leistungshebel Winkel
PNF pilot not flying assistierender Pilot
QAM local weather report Flugplatzwettermeldung
QFE Stationsdruck
QNH auf Meereshöhe reduzierter Luftdruck,
berechnet mit den Werten der ICAOStandardatmosphäre
RA radio altimeter Radarhöhenmesser
RA radar altitude Radarhöhe
RNAV area navigation Flächennavigation
ROC rate of climb Steigrate
ROD rate of descent Sinkrate
RVR runway visual range Pistensichtweite
RWY runway Piste
Rx receiver Empfänger
SCT scattered 3-4 Achtel Bewölkung
SG symbol generator
SID standard instrument departure Instrumentenabflugroute
SIGMET information concerning en-route
weather phenomena which may affect
the safety of aircraft operations
Informationen bezüglich Wettererscheinungen
auf der Flugstrecke, welche
die Sicherheit des Flugbetriebs beeinträchtigen
können
S/N serial number Werknummer
SOP standard operating procedures Standardbetriebsverfahren
SR slant range Schrägdistanz - Distanz zwischen dem
Luftfahrzeug und der Bodenstation im
dreidimensionalen Raum
SSR secondary surveillance radar system
SSCVR solid state cockpit voice recorder
STAR standard instrument arrival route Instrumentenanflugroute
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 152 von 152
SWC significant weather chart
TAF aerodrome forecast Flugplatzwettervorhersage
TAS true airspeed Wahre Fluggeschwindigkeit
TCAS traffic alert and collision avoidance
system
TAWS terrain awareness and warning system
TMM transmissometer Pistensichtmessgerät
TOGA takeoff go around
TR type rating Musterberechtigung
TRK track Kurs über Grund
TRP thrust rating panel
T/S trouble shooting Fehlerbehebung
TWR tower Kontrollturm
ULB underwater locator beacon
UTC universal time coordinated Koordinierte Weltzeit
VAC voltage - alternate current Wechselspannung
VDC voltage - direct current Gleichspannung
VDP visual descent point
VERT SPD vertical speed
VFR visual flight rules Sichtflugregeln
VHF very high frequency
VMC visual meteorological conditions Sichtwetterbedingungen
VOR VHF omnidirectional radio range UKW-Drehfunkfeuer
VPU vortac position unit
WO workorder Arbeitsauftrag
XPDR transponder
ZUE VOR Zurich East VOR Drehfunkfeuer Zürich Ost
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 1 von 5
Anhang 1: Zeitliche Abfolge wesentlicher Ereignisse
UTC Ereignis Bemerkung
20:36:48 –
20:37:23
Copilot entschlüsselt Pistenzustandsbericht
20:37:25 –
20:39:17
Kommandant erklärt dem Copiloten einen Teilaspekt,
Copilot antwortet 12 Mal „Ja“ oder „Jawohl“,
am Schluss, „Jetzt han i grad wider öppis
glärnt.“
20:40:10 ATIS LIMA tritt in Kraft: „Landing runway 28,
VOR/DME standard approach“
Der Besatzung zu diesem Zeitpunkt
unbekannt
20:42:58 –
20:44:05
Approach briefing RWY 14, ev. 16 Erwartung der Besatzung: Landung
auf Piste 14
20:43:44 Copilot macht den Kommandanten auf Geschwindigkeitsüberschreitung
aufmerksam – der
Kommandant entschuldigt sich mehrfach
Kleiner Arbeitsfehler als möglicher
Effekt von Müdigkeit:
Nicht mehr alle Parameter können
gleichzeitig überwacht werden.
20:44:56 ATIS MIKE tritt in Kraft, runway report aufdatiert,
aber keine wesentliche Änderung
Der Besatzung zu diesem Zeitpunkt
unbekannt
20:46:20 Der Copilot fragt den Kommandanten, ob er
nachfragen solle, dass immer noch Piste 14 benutzt
werden kann: „Söli ämal fragä öbs Vierzähni
oder sägemer…s’wird grad eso knapp“
Die Aussage zeigt, dass der Copilot
aufgrund der fortgeschrittenen
Zeit annehmen
konnte, dass mit einem Wechsel
auf eine andere Piste zu
rechnen war
20:46:23 Der Kommandant antwortet: „Ja, s’isch scho
s’Vierzähni“ Der Copilot darauf: „S’Vierzähni“
Der Kommandant reagiert nur
kurz auf die Anfrage des Copiloten.
Der Kommandant ist
zwischen 20:46:04 und
20:46:27 mit der Geschwindigkeitsüberwachung
beschäftigt:
Es besteht offenbar die Gefahr,
dass diese wieder überschritten
wird.
20:48:22 Copilot ruft Zürich arrival auf und bestätigt ATIS
KILO
Copilot bestätigt eine seit
20:40:10 ungültige Meldung.
20:48:30 ATC: “Crossair 3597, you’re identified, it will be a
standard VOR/DME approach runway 28 for you”
Der Wechsel auf die Piste 28
wird der Besatzung zum ersten
Mal mitgeteilt.
20:48:39 Kommandant: “Ou, *****1, das äno, ja, guet ok.
1 Ausdrücke, die eine spontane persönliche Bewertung der gegenwärtigen Situation darstellen sowie persönliche
Äusserungen ohne direkten Bezug zum Unfallgeschehen werden mit ***** gekennzeichnet.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 2 von 5
UTC Ereignis Bemerkung
20:50 ATIS OSKAR tritt in Kraft
20:51:56 –
20:53:05
Rebriefing im holding RILAX
20:52:ff bespricht der Kommandant das Verfahren
und beschreibt, dass ein left turn vorgeschrieben
sei: „Wämer de turn macht bi
Ko…Komma sächs Meile, sächs Komma föif Meile
left turn…“
20:53:ff: „S’NAV setting bitte zweimal Chlote für
de approach, bis deet ane isch’s up to you.“
Räumliche Vorstellung des
Flugweges unterbleibt, der
Flugweg enthält eine Rechtskurve.
Keine Beschreibung des eigentlichen
Absinkens: Konfiguration,
VDP etc. fehlen
20:53:37 Kommandant: „Also schön Ziit, mer werded…also
würklich well on time sii, hä?“
Hinweis auf die Absicht des
Kommandanten, pünktlich landen
zu können
20:53:42 Flugzeug verlässt holding RILAX
20:55:03 Flugzeug hat Geschwindigkeit von 210 kt, Kommandant
lässt Copilot nachfragen, welche Geschwindigkeitslimiten
gelten.
Copilot fragt nach, ATC: „Ah, no restriction on
speed for the time being“
Kommandant: “I dem Fall 250, hä?”
Nochmals ein Hinweis, dass Zeit
aufgeholt werden soll. Die Geschwindigkeit
wird ab 20:55:16
bis 20:55:46 sukzessive auf 250
kt erhöht.
20:56:14 ATC: „…follow ZUE VOR radial 125 inbound“
Copilot: “…radial 152, Crossair 3597”
ATC: “Aah, radial 125”
Copilot: “125, Crossair 3597”
Angabe der ATC ist 180° falsch,
Missverständnis bezüglich der
falschen Angabe wird korrigiert
20:56:38 –
20:57:10
Kommandant überlegt die Angabe, realisiert,
dass es sich um „track 125“ handelt
Nachfrage an ATC unterbleibt,
Anwendung von common sense
20:58:13 Einstellung QNH 1024 und altimeter check Quervergleich zeigt keine Abweichung
20:58:40 Copilot fragt nach APU, Kommandant bittet, diese
zu starten, erster Versuch
APU läuft nicht an.
20:58:50 ATC gibt Freigabe für VOR/DME standard approach
runway 28
20:59:25 Kommandant: „LNAV isch dine…“
20:59:55 Copilot versucht nochmals die APU zu starten,
21:00:04: „Jawohl, jetzt chunnt’s guet“
APU läuft an.
21:00:56 ATC: „Crossair 3597 reduce speed to one eight
zero (180 kt) or less”.
Beginn der Verzögerung, teilweise
mit air brake
21:01:39 Kommandant: „Speed is checked, flaps eighteen
(18°)“
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 3 von 5
UTC Ereignis Bemerkung
21:02:00 Kommandant erwähnt, dass Geschwindigkeit
ca. 160 KIAS beträgt
21:03:01 ATC: „Crossair 3597, tower one one eight one
(118.1 MHz) continue your speed reduction to final
approach speed“ – Kommandant bestätigt,
dass er daran sei, abzubremsen
Übergabe an Platzverkehrsleitstelle
(ADC)
21:03:29 CRX 3891, EMB 145 landet auf Piste 28
21:03:36 Kommandant: „Ground contact hämmer…“ Flugzeug überfliegt Kollbrunn,
Kommandant beginnt, nach
draussen zu sehen.
21:03:56 Kommandant bestätigt immer noch eine Geschwindigkeit
von 160 KIAS
21:04:23 Besatzung stellt Schrägdistanz von 8 NM zum
VOR/DME KLO fest und leitet Sinkflug ein
21:04:31 CRX 3981 übermittelt an ATC: „Just for your information:
the weather for runway 28 is pretty
minimum. So we had the runway in sight about
2.2 DME”
Diese Meldung wird zumindest
vom Kommandanten aufgenommen,
wie seine Reaktionen
um 21:05:59 und um 21:06:25
belegen.
21:04:34 Kommandant befiehlt: „Gear down“ Gemäss Verfahren von Crossair
für einen NPA sollte das Flugzeug
vor Beginn des Endanfluges
(hier 8 NM) schon mit
ausgefahrenem Fahrwerk und
Flaps 24° konfiguriert sein.
21:04:37 HB-IXM verlässt 4000 ft QNH, 160 kt, Sinkrate
von 1000 ft/min anfänglich, später 1200 ft/min
21:04:47 Kommandant befiehlt: „Flaps two four (24°)“ Änderung der Konfiguration und
der Geschwindigkeit während
des Anfluges erschwert das
Einhalten eines gleich bleibenden
Anflugwinkels
21:04:51 Beginn check for approach, endet ca. um
21:05:00 mit der Sequenz: Copilot: „airchange
over“ – Kommandant: „Mache!“
Copilot ist am Schluss des check
for approach, als der Kommandant
die Feststellung um
21:05:02 macht, vermutlich
noch mit airchange over beschäftigt
21:05:02 Kommandant stellt fest: „…sechs Meile, drüü,
drüü (33) das chunnt guet“
21:05:15 Kommandant: „Speed 140 chömmer nä, hä?“
Copilot: „Jawohl, me händ de pack recirc valve…“
Flugzeug befindet sich auf
3340 ft QNH
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 4 von 5
UTC Ereignis Bemerkung
21:05:21 Copilot: „Tower gueten Abig, Crossair 3597, established
VOR/DME runway two eight“.
ATC: “Crossair 3597, gueten Abe”.
Flugzeug ist bei 6 NM und hat
tatsächlich 3240 ft QNH statt
3360 ft QNH, Abweichung wird
nicht beachtet
21:05:27 Kommandant: „Sechs Meile drüü drüü isch checked…“
Copilot: „Jawohl“
Kommandant: „S’Minimum isch 2400 grundet“
Letzter Hinweis auf eine Distanz
vom VOR KLO durch die Besatzung
Erster Hinweis auf MDA
21:05:36 Kommandant: „Flaps three three (33°)“ – Copilot:
„Speed checked, flaps three three selected“
Kommandant: “Final check” – Copilot: “Final
check, confirm three greens” – Kommandant: “Is
checked”
Nun beginnt eine Sequenz, die
beide nochmals beschäftigt.
21:05:44 Kommandant: „Hundert sächzäh (116 kt)“ – Copilot:
„Full flaps…set” – Kommandant: “Checked”
– Copilot: “Cabin report received” – Kommandant:
“Received” – Copilot: “Landing clearance to
go” – Kommandant: “Isch to go” – Copilot: “Jawohl”
Nochmals wird Konfiguration
geändert, beide beschäftigt
21:05:55 Kommandant: „Ground contact hämmer, hä?“ –
Copilot: “Jawohl”
HB-IXM befindet sich auf ca.
2680 ft QNH, näherte sich der
MDA, Kommandant erkennt
dies, schaut wieder nach draussen.
Gemäss Aufgabenteilung
sollte er als PF ausschliesslich
auf die Instrumente sehen.
21:05:59 Kommandant: „Mä hät gseit, Pischte hät er spaat
gseeh da…approaching minimum descent altitude…
da hämmer echli ground contact“
Kommandant erinnert sich an
die Meldung der CRX 3891,
schaut wieder nach draussen.
Es wird kein Quervergleich mit
der Distanz erwähnt
21:06:10 Kommandant: „…zwo vier, s’Minimum…ground
contact han ich…mer gönd wiiter im Moment…es
chunnt füre…ground contact hämmer...mer gönd
wiieter“ Copilot dazwischen leise: „Zwei, vier“
HB-IXM erreicht MDA
Copilot tönt MDA an
21:06:22 RA callout: „Five hundred“ Flugzeug befindet sich auf 2150
ft QNH
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 5 von 5
UTC Ereignis Bemerkung
21:06:25 Kommandant: „*****“, 2 Meile hät er gseit,
gseht er d’Pischte“
HB-IXM ist zu diesem Zeitpunkt bei 4 NM DME
KLO
RA callout löst vermutlich ein
erstes Unbehagen aus. Kommandant
erinnert sich nochmals
an Aussage von CRX 3891.
HB-IXM ist aber noch zu weit
von der Piste entfernt, um
Sichtkontakt mit der Anflugbefeuerung
erzielen zu können.
Ein Quervergleich mit DMEDistanz
findet nicht mehr statt.
21:06:31 Kommandant: „Zwöi tuusig (2000)“
21:06:32 RA callout: „Minimums“ 300 ft RA
21:06:33 Kommandant: „…go around mache?“ – Parallel
dazu ATC mit Landeerlaubnis, cavalery charge
21:06:34 Kommandant: „Go around!“ – Copilot: „Go
around!“
21:06:36 Beginn Aufprallgeräusch, parallel dazu RA callout:
“One hundred”
100 ft RA
21:10:32 ATC löst Alarm aus
Schlussbericht HB-IXM (CRX 3597)
Anhang 2: Eingebauter Oil Indicator
Büro für Flugunfalluntersuchungen Seite 1 von 1
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 1 von 2
Anhang 3: Warning envelope of the ground proximity warning
system (GPWS)
Mode 1. Excessive sink rate
This mode is effective in all aircraft configurations and provides for flight over level ground when the
aircraft is losing height at an excessive rate. The GPWC compares the IRS vertical speed (or ADC
barometric altitude sink rate if IRS is not available) with the available terrain clearance to determine if
a hazard exists. The warning is given to allow time for a gentle recovery manoeuvre. Thus, the
smaller the terrain clearance the smaller the sink rate that triggers a warning. Below certain heights,
it is assumed that the aircraft is making a deliberate descent and a greater sink rate is tolerated.
When using IRS data, the lower limit for this mode is 10 ft. When using ADC data below 30 ft., the
GPWS is inhibited to avoid nuisance warnings resulting from ground effect on the static pressure
system. This mode has two unique boundaries. The outer boundary advises the pilot that the rate of
descent for a given altitude is excessive and the condition should be adjusted.
The warnings are the PULL UP annunciators illuminating and a SINK RATE SINK RATE audible
warning. If the second boundary is penetrated, a WHOOP WHOOP PULL UP audible warning sounds.
If the envelope is penetrated, the aural warning “SINK RATE” is given and PULL UP warning light on
the glareshield illuminates until the envelope is left. If descent continues and the inner envelope is
penetrated, the aural warning “WHOOP WHOOP PULL UP” is given. It can be seen that the PULL UP
warning occurs at a higher radio altitude for higher descent rates. This is designed to provide
sufficient response time for the pilot to recover.
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 2 von 2
Mode 2. Excessive terrain closure rate
This mode provides for level flight in which the terrain is rising. Terrain closure rate is derived from
radio altitude and is compared against terrain clearance. Two sub-modes (mode 2a and mode 2b) are
provided to afford adequate protection in cruise while keeping nuisance warnings to a minimum
during approach.
Mode 2b. With the flaps selected to land, this mode operates between 789 ft and 200ft. The slope of
the flight path reflects a ground closure rate appropriate to landing. The mode is also active when
making an ILS approach with a glide slope deviation less than 1.3 dot. It can be selected by pressing
the FLAP WARN OVRD switch.
Mode 2b warnings are red PULL UP annunciators and an audible warning. The warning is cancelled
when the aircraft has gained 300ft altitude and is on a safe flight path.
Mode 2b. During an approach with either the flaps in the landing configuration or with the aircraft
established on an ILS, the envelope is modified to allow passage over hilly terrain without triggering a
warning. The warnings are the same as mode 2a.
MIN TERRAIN
CLEARANCE
(1000ft)
CLOSURE RATE
(1000ft)
Schlussbericht HB-IXM (CRX 3597)
Anhang 4: Anflugprofil des Unfallfluges CRX 3597
Büro für Flugunfalluntersuchungen Seite 1 von 1
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 1 von 2
Anhang 5: Rekonstruktion des Anfluges auf Piste 28 im Simulator
Piste 28 vom Visual Descent Point (VDP) auf 2390 ft AMSL bei Tag mit über 10 km Sicht
Gleiche Aufnahme, jedoch mit 5000 m Sicht
Auf dieser Aufnahme ist ersichtlich, dass bei einer weiteren Sichtreduktion auf 3500 m ungenügende
Sicht auf die Anflugbefeuerung und/oder Pistenschwelle herrschte. Bei 2000 m sieht
man weder die Anflugbefeuerung noch die Pistenschwelle.
Anflugbefeuerung
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 2 von 2
Die folgende Aufnahme wurde ebenfalls auf knapp 1000 ft (ca. MDA) über der Flughafenhöhe
gemacht. Das Flugzeug befindet sich auf einem 3° Anflugwinkel. Die meteorologischen
Bedingungen waren wie folgt: broken 2000 ft bei 5000 m Sicht.
Die folgende Aufnahme zeigt die visuelle Präsentation auf der Minimum Descent Altitude beim
Erreichen des Missed Approach Point bei einer Sicht von 10 km. Aus dieser Position begannen
kurz vor dem Unfallflug die beiden Flüge CRX3891 (D2.2 KLO) und CRX3797 (D2.4 KLO) ihre
Endanflüge.
Anflugbefeuerung
Schlussbericht HB-IXM (CRX 3597)
Anhang 6: Localizer DME Piste 03 in Lugano
(heute IGS approach Piste 01)
Büro für Flugunfalluntersuchungen Seite 1 von 1
Schlussbericht HB-IXM (CRX 3597)
Anhang 7: Anflugkarte AIP Schweiz, LSZH AD 2.24.10.7-1
Büro für Flugunfalluntersuchungen Seite 1 von 1
Schlussbericht HB-IXM (CRX 3597)
Anhang 8: Anflugkarte 13-2 Zürich, Schweiz, Jeppesen Inc.
Büro für Flugunfalluntersuchungen Seite 1 von 1
Schlussbericht HB-IXM (CRX 3597)
Büro für Flugunfalluntersuchungen Seite 1 von 1
Anhang 9
Graphische Zusammenstellung der Resultate von line, route und simulator checks des Kommandanten.
Da die Notenskala im Laufe der Zeit variierte, wurden die Noten normiert, um
diese vergleichen zu können (blaue Datenreihe). Der Wert 0.5 entspricht einer durchschnittlichen
Leistung. Die Anzahl der auf den Checkblättern erwähnten negativen Kritikpunkte wurde
ebenfalls aufgetragen (rote Datenreihe).
Schlussbericht HB-IXM (CRX 3597)
Anhang 10: Detailliertes Anflugprofil des Fluges CRX 3597
Büro für Flugunfalluntersuchungen Seite 1 von 1
Schlussbericht HB-IXM (CRX 3597)
Anhang 11: Graphische Darstellung des final segments des
standard VOR/DME approach 28
Büro für Flugunfalluntersuchungen Seite 1 von 1Hier entsteht die Seite Crossair-LX 3597 Unfallbericht.

Dies ist eine kostenlose Homepage erstellt mit hPage.com.